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ABSTRACT

Wall-Fluid Instabilities in Compliant Channels Conveying Developing Flows

Peter Gavin LaRose

A collapsed lung airway or flexible tube is modelled as a two-dimensional channel of infinite
length. We consider the linear stability of this system conveying a developing flow profile, which
is approximated with a uniform profile and perturbation of the Blasius profile for flow over a flat
plate. Exact and asymptotic solutions are found for the uniform profile. For the perturbation
profile an analytical solution is found for long waves and a numerical shooting solution for
arbitrary wave lengths. Results for the uniform and perturbation profiles are found to be generally
in qualitative agreement, though the perturbation profile is less stable. For the perturbation profile
we find a long wave instability which is absent for uniform flow and hence has not been seen in
previous channel studies. This is stabilized by increasing the elastance of the wall, but other wall
properties do not affect the critical flow speed except in correction terms. Increasing the channel
width decreases the critical flow speed for the instability, but increases the critical flow rate. We
hypothesize that this is related to the tube collapse that is seen in this type of system prior to the
appearance of an oscillatory (flutter) instability. The finite wave length (flutter) instability is
destabilized by decreasing wall damping, increasing wall inertia, decreasing wall elastance or
flexural rigidity, and decreasing channel width, and may appear independent of or simultaneously
with the long wave instability. Comparisons with experimental investigations of air flow in

flexible tubes shows that the theoretically predicted flutter frequencies are in good agreement with
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those observed experimentally, but that there are difficulties in comparing the predicted critical
flow speeds, due to the tube geometry introduced by the tube collapse that precedes flutter. We
investigate the possible effect of this geometry using finite elements software to model flow in
the collapsed tube cross-section. Finally, we compare the experimentally observed critical flow
speeds for the onset of collapse with our theoretical predictions for the long wave instability,
finding qualitative support for our hypothesis that collapse is the physical manifestation of the

long wave instability.

Advisor: Professor James B. Grotberg
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CHAPTER 1: INTRODUCTION

§1.1 Motivation

In this dissertation we examine the stability of a flexible, fluid-conveying two-dimensional
channel. This is a model for the many systems in engineering and physiology in which flows are
conveyed by tubes that are to some degree flexible. In engineering applications the existence of
flow-induced vibrations or larger scale motion, e.g. in oil pipelines, may attest to the flexibility
of a tube, and in other applications, e.g. physiological tubes such as the lung airways, the
flexibility of such a structure is more obvious. In many of these applications the tubes are short
and flow speeds large, so that the flows do not become fully developed. This is the case for the
application in which we are primarily interested, the lung airways, which have air flow through
short, thick-walled tubes. It is thought that wheezing lung sounds are symptomatic of an

oscillatory wall-fluid instability (flutter), and this motivates the present study.

§1.2 Characteristics of flexible tubes

There are a number of interrelated steady and unsteady behaviors that occur in flexible
fluid-conveying tubes which are absent in rigid systems. If the pressure difference between the
exterior and interior of such a tube is sufficiently large, the tube may collapse, resulting in an
obstruction of the tube cross-sectional area. With increasing pressure, the initially circular cross-
section becomes oval, then dumbbell shaped, and finally reduces to a pair of small conduits
connected by a completely closed center section (Shapiro 1977). For very flexible tubes the
pressure difference required to precipitate collapse may be small enough that easily attainable

changes in the tube environment, or the pressure drop resulting from a flow in the tube interior,
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may be sufficient to cause some degree of reduction in the tube cross-sectional area. With the
occurrence of collapse, the flow rate through the tube may become independent of the conditions
at the downstream end of the tpbe, either from wave-speed limitation (Dawson and Elliot 1977;
Shapiro 1977) or viscous limitation (Shapiro 1977). While the flow rate remains constant,
however, the flow speed in the tube may still increase with decreasing downstream pressure to
maintain mass conservation through the narrowing collapsed section of the tube. Concurrent with
or following collapse, large or small amplitude oscillations of the tube walls may also be seen;
small amplitude wall oscillations may also occur in less flexible (uncollapsed) tubes transporting
fluids at sufficiently high velocities.

The oscillatory wall-fluid instabilities that are present in flexible tubes may be divided
into two categories; those that require wall inertia (which we call flutter) and those that do not.
The work on oscillatory instabilities in the absence of wall inertia is the subject of a review by
Kamm and Pedley (1989); we refer the reader to their paper for a complete treatment of and
reference list for this subject. Instabilities of this type are commonly large amplitude, lower
frequency oscillations due to unsteady head loss resulting from the motion of the separated flow
region downstream of a constriction in the tube. Flutter instabilities are small amplitude, high
frequency oscillations arising from the coupling of the fluid-dynamic pressure with the compliant
wall. Instabilities similar in mechanism to Kelvin-Helmholtz and water waves are among these.
For the appearance of a flutter instability, a well defined critical fluid velocity must be attained.
Flow limitation is not a prerequisite for the instability, but flutter may be facilitated through the
decrease in tube cross-sectional area and resulting increase in fluid flow speed that accompany
limitation, and in experimental studies of flutter in thick-walled tubes (Gavriely et.al. 1989) and

wheezing in the lung (Gavriely et.al. 1987) these oscillatory phenomena have in fact been




observed only in the presence of flow limitation.

§1.3 Flow limitation and flutter in the lung

Flow limitation is well documented in the lung, and is described in a review by Hyatt
(1983). In healthy subjects, flow limitation may be seen in forceful exhalation, and in lung
obstructed patients the effort required to cause flow limitation may be low enough that the flow
rate in normal breathing may become limited. In collapsible tubes oscillatory instabilities are seen
following tube collapse and flow limitation (Gavriely er.al. 1989), and it was proposed by
Grotberg and Davis (1980) that wheezing lung sounds may be symptomatic of such a flutter
instability in the lung airways. Experiments with forced expiratory wheezes and lung preparations
have shown that flow limitation is a requisite for wheezing sounds (Gavriely et.al. 1987), that
these sounds are dependant on wall, rather than gas, properties (Shabtai et.al. 1992), and that they
depend on the flexibility of lung structures (Gavriely and Grotberg 1988). Thus a wall-fluid
instability provides a likely explanation for the wheezing sounds heard on forced exhalation and
in lung preparations. Further, as the spectral content and other characteristics of these sounds are
similar to those of wheezes in patients with asthma and other lung obstructive diseases (Gavriely
et.al. 1987) and tube experiments (Gavriely et.al. 1989), the sound-producing mechanism in each
is likely to be the same. In tube experiments, in particular, oscillatory instabilities may be
observed directly and compared with theoretical investigations of flutter (Grotberg and Gavriely
1989) to demonstrate that this provides a likely explanation for experimental observations.

Other possible mechanisms for the generation of wheezing lung sounds were considered
by Gavriely et.al. (1984). Of these, the only one consistent with the experimental observations

described above (besides flutter) is vortex resonance, the resonance of vortices shed from a sharp
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edge or constriction with the natural frequency of the compliant airway wall, thus exciting
oscillations. It appears, however, that there is more evidence to support flutter as the cause of

wheezing lung sounds.

§1.4 Organization of the remainder of the dissertation

In the preceding we have outlined the experimentally observed behavior of compliant
tubes and the evidence linking this to the lung airways. In particular, we observed support for
the theory that wheezing lung sounds are symptomatic of flutter of the airway walls. In the next
chapter we review the theoretical work providing insight on the problem of oscillatory instabilities
in fluid-conveying compliant tubes and channels. We develop a model of a collapsed lung airway
or flexible tube in Chapter 3, solutions for which are obtained in Chapters 4 and 5. In Chapter
6 we compare results obtained with these models with tube experiments and forced expiratory

wheezes. In Chapter 7 we conclude our analysis with a final discussion of the results obtained.




CHAPTER 2: LITERATURE REVIEW

§2.1 Overview

Given the wide range of physiological and engineering applications involving flow
through compliant tubes, it comes as no surprise that there is an expansive body of literature
involving the theoretical analysis of such systems. In this chapter we review the more relevant
of these works.

For flow through collapsible tubes there is a volume of work with lumped parameter and
one-dimensional models. Lumped parameter models (e.g. Conrad 1969; Katz et.al. 1969)
condense the global effects of the tube geometry and fluid flow into an equation for a simple
time-dependent variable, and illustrate the coupling of effects within the system, but are otherwise
of limited application. One-dimensional models consider the fluid variables and tube cross-
sectional area to be functions of time and distance along the tube; these are found through
solution of the fluid equations, supplemented by a ’tube law’ relating the tube cross-sectional area
to the transmural pressure. These models have been applied to the analysis of steady tube
collapse (Shapiro 1977) and to unsteady behavior (Kamm and Shapiro 1979) and flow-induced
oscillations (Cancelli and Pedley 1985) in the absence of inertia. However, while these studies
have been fundamental in understanding the behavior of collapsible tubes, they do not include
investigations of the flutter instability. We therefore do not review this field here, and instead
refer the interested reader to the review of Kamm and Pedley (1989).

While we are specifically interested in studying the behavior of compliant fluid-
transporting tubes (or channels), there is considerable overlap between the nature of the flutter

instability in such systems and that for flows over single compliant plates. Our review therefore
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covers work on both subjects, and while we use the distinction between the geometries to
discriminate between studies, the chapter sections are divided according to other criteria that are
more significant in determining the characteristics of the instabilities in the system. It is perhaps
not coincidental that these differences correspond roughly to the motivations for the studies.
Before continuing with the review proper we briefly summarize these motivations and outline the
organization of the remainder of the chapter.

In §2.2 we review some of the earliest investigations of the stability of flows with
compliant boundaries, which were inspired by the experimental work of Kramer (1960) on drag
reduction by use of surface compliance. The observation of oscillations in pipelines and other
structures spurred investigation of the stability of inviscid flow through tubes and over panels;
we consider this in §2.3. In §2.4 we describe channel studies motivated by interest in both
engineering and physiological applications, which clarify some of the behavior seen previously.
Some recent work on the stability of flow over a compliant plate and the possibility of drag
reduction by use of a compliant surface are reviewed in §2.5. Finally in §2.6 we briefly consider
some of the other approaches in the analysis of the behavior of systems involving flow past
compliant structures, including forcing and full numerical simulations. In §2.7 we conclude our
review in the context of the present work.

Clearly the investigation of such stiff structures as pipelines will proceed from a slightly
different viewpoint than will work on the more flexible tubes that are found in physiological
applications. Even for tubes that are not for flow rates of general interest susceptible to the
collapse phenomenon seen in more flexible tubes, however, the stability analysis of the flutter
instability méy proceed in a similar manner to that for more flexible systems, and as a result

insight may be gained from considering these studies.




§2.2 Early work and instability types

The pioneering work on the interaction of flows with compliant structures is that of
Benjamin and Landahl, who in the early 1960s considered the stability of flow over a compliant
panel. In that the Tollmien-Schlichting instability is due to viscosity, which is confined 'to a
narrow boundary layer near the wall, Benjamin (1960) observed that wall flexibility should have
a significant effect on the instability. His and later work (Landahl 1962, Benjamin 1963)
confirmed this, and also showed that there are in addition to the viscous fluid instability other
wall-fluid instabilities which arise as a direct result of wall compliance and which may exist in
the absence of viscosity; these include the instability corresponding to the channel flutter in which
we are interested. Benjamin and Landahl classified these instabilities as Types A, B or C waves
according to the change of the total kinetic and elastic energy in the system necessary for their
growth. Type A instabilities are negative energy waves in the sense that these energies decrease
as the amplitude of the wave increases; Type B are precisely the opposite, and for Type C waves
the energy remains unchanged. The stability of Types A and B waves is thus determined by the
net effect of non-conservative forces in the system while Type C waves are destabilized by the
unidirectional transfer of energy from the fluid to the wall by conservative forces, and are
analogous to the Kelvin-Helmholtz instability of superposed fluids. Type C waves arise as the
coalescence of a Type A and a Type B wave, and are the only type of instability possible in a
conservative system. The Tollmien-Schlichting instability may be classified as Type A. As the
growth of Type A waves requires a decrease in system energy such waves will be destabilized
by wall damping, while, conversely, Type B waves will be stabilized. Miles (1957) demonstrated
that for a shear flow over a wavy wall there may exist a component of fluid pressure in phase

with the slope of the wall; this pressure component may do work on, and thus add energy to, the
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wall. Through this effect, the addition of viscosity to the problem may stabilize Type A waves
and destabilize Type B waves. Dissipative processes do not affect the stability of Type C waves,
but do cause a slight decrease in their growth rate.

Benjamin and Landahl showed that as the wall flexibility is increased the Tollmien
Schlichting instability (TSI) is stabilized. To postpone the onset of instability, however, it is also
necessary to avoid the destabilization of the other wave types, so that the compliant surface must
be chosen with care to obtain any significant improvement in stability (Landahl 1962). A similar
stabilization of the TSI was seen by Hains and Price (1962) for Poiseuille flow through a flexible

channel. A good review of this early work appears in Benjamin (1964).

§2.3 Work with finite length panels and pipes in potential flow

We next consider work on the stability of systems consisting of compliant panels or tubes
of finite length with potential flows. As the flows are inviscid no information is gained on the
behavior of the TSI, but the nature of the wall-fluid flutter instability may be examined.

Weaver and Unny (1970) considered the stability of a system with potential flow over a
two dimensional flexible plate of finite length. They found a divergence instability as the flow
speed is increased, that is, an instability with zero phase speed; physically divergence may take
the form of a stationary or slowly moving, growing wave train on the flexible surface. At onset
this is a mode one instability, meaning that a single wave spans the entire surface, but Weaver
and Unny predicted that at higher flow speeds oscillations may be seen, followed by a second
divergence mode. However, in that they used linear theory it is not clear that their conclusions
regarding the behavior of the system following the onset of instability are valid. The addition of

damping to the wall has little effect on the instability. Similar results were seen by Komecki




(1974), Komecki et. al. (1976) and Ellen (1973).

The results for finite length tubes conveying potential flows are similar to those for
panels. Weaver and Unny (1973) and Komecki (1974) examined the behavior of such systems
and determined that the instability is again divergent at criticality, with flutter occurring only at
higher flow speeds, if at all (though, again, the use of linear theory calls into question conclusions
drawn following the onset of instability). This flutter is a "coupled mode’ instability arising from
the coalescence of two divergence modes; the manner in which this coupling takes place was
elucidated by Paidoussis and Issid (1974), who considered the problem with a more accurate pipe
model. Depending on the choice of wall characteristics the flutter instability may or may not be
present, though when present it is always preceded by divergence. Paidoussis and Issid’s work

also includes a review of the literature on the problem of the stability of flow in flexible pipes.

§2.4 Work with channel flow

A channel may be seen as a two dimensional model of a tube, but there are additional
physical considerations that suggest that the channel geometry is worthy of attention. Weaver and
Paidoussis (1977) observed that the flutter instability seen in tubes is not the classical shell flutter
mode in which the tube flattens alternately in the two perpendicular directions normal to the tube
axis, but rather a ’flapping flutter’ that occurs after the tube has flattened somewhat to become
oval. This flapping .ﬂutter then involves the oscillation of the longer opposing walls of this oval
either in or oui of phase with one another, and its nature suggests that it might be appropriate to
model the tube as a channel. A similar conclusion may be reached on consideration of the nature
of the collapse and oscillation of the flexible tubes appearing in physiology; these tubes are more

flexible than those considered by the authors mentioned in §2.3, so that there may be dramatic
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changes in their cross-sectional geometry, as noted in §1.2. In this case a circular tube model is
not representative of the actual tube geometry, and it may be more appropriate to instead model
the central (flat) section of the collapsed tube (which is that which oscillates) as a channel.

Motivated by their observation, Weaver and Paidoussis considered a channel with flexible
walls conveying an inviscid flow. They used two wall models, one with inertia, bending stiffness
and damping, and another consisting of two parallel plates with constrained edges but infinite
length (so that the channel was in this case essentially three dimensional, but without side walls).
In either case they found a divergence instability for both the symmetric and antisymmetric flutter
modes (in which the channel walls oscillate out of or in phase with one another, respectively),
followed by coupled mode flutter. Again, only linear theory was considered, so that their
demonstration of flutter remains inconclusive. They compared these results with experiments and
found qualitative agreement. (It should be noted that Weaver and Paidoussis used the method of
images to find the fluid velocity; however, while this results in an expression involving an infinite
sum, they included only the first two terms, so that their solution allows cross-flow at the walls
of the channel.) Matsuzaki and Fung (1977) considered a similar problem, with inviscid flow
through a channel with a flexible section of finite length, modelled using the von Karman plate
equations, and also found a divergence instability.

Grotberg and Davis (1980) considered the channel flow problem (with flexible walls of
infinite length) as a model of a collapsed lung airway, theorizing that wheezing lung sounds may
be symptomatic of a flutter oscillation in the airway walls. They used two wall models that
included inertia and either bending stiffness or elastance, respectively, and found a flutter
instability unless wall damping was also included in the wall, in which case instability appeared

at lower flow speeds and was divergent. This is consistent with the results of Weaver and
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Paidoussis (1977), as the latter considered only damped walls. Grotberg and Davis showed also
that results obtained in the two dimensional geometry are consistent with one dimensional studies
(e.g. Shapiro, 1977). The drop in critical flow speed with the addition of damping was first
explained by Landahl (1962), who showed that without wall damping there is preceding the
appearance of instability a state of unstable equilibrium (neutral stability) that is broken through
the addition of damping, thereby reducing the critical flow speed. A similar drop in critical flow
speed may be obtained by including fluid viscosity in the absence of wall damping; this results
in the appearance of a flutter instability. This observation was made for flow over a compliant
plate by Carpenter (1984), and may be seen for channel flow with the Grotberg and Reiss (1984)
model (cf. below).

The appearance of divergence only in systems with wall damping appears at first sight
to contradict the results seen in §2.3, in which irrespective of whether the walls were damped the
instability was divergent at onset. This difference is, however, due to another fundamental
difference between the systems being considered in §2.3 and above, namely the finite length of
the flexible section. Lucey and Carpenter (1992, 1993) addressed this issue when considering
flow over a finite length compliant plate, and showed that in the case of a finite geometry there
are always end effects that influence the system in the same manner as damping in the infinite-
length case.

In all of the analyses thus far considered, a divergence instability is seen at criticality.
However, in physical systems flutter is observed; to address this discrepancy, Grotberg and Reiss
(1982, 1984) added a hydraulic friction term to the potential flow through a channel to
approximate the effect of viscosity. (Grotberg and Shee (1985) showed that this is consistent with

the full Orr-Sommerfeld system when viscosity and wall damping are taken to zero and their ratio
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is O(1).) They found that the addition of fluid friction results in the reappearance of the flutter
instability, and through a weakly non-linear analysis showed also that the bifurcation to flutter
is supercritical and hence stable. The recovery of a flutter instability with the addition of
viscosity is due to the fact that viscosity stabilizes Type A wall-fluid instabilities (as noted in
§2.2) while destabilizing those of Type B. The introduction of wall damping to the inviscid
system destabilizes the Type A wave, leading to a divergence instability; the addition of viscosity
may restabilize this wave (and destabilize the Type B wave), resulting in an oscillatory instability.
The Grotberg and Reiss channel model was reconsidered with the addition of fluid compressibility
by Grotberg and Shee (1985), who found generally slight corrections to the incompressible case.
To show that the wheezing lung sounds that Grotberg and Davis (1980) first set out to describe
are in fact due to flutter of the airway walls, Grotberg and Gavriely (1989) compared the results
obtained with the Grotberg and Reiss model with experiments involving flow through flexible
tubes, and found good agreement between theory and experiments.

Webster et. al. (1985) experimentally and theoretically examined flow through a model
of the trachea, a three sided duct covered with a compliant tensioned membrane. Their theoretical
model was a two-dimensional channel with one compliant boundary; the flow was taken to be
potential and the wall undamped. Due to the singular influence of damping on this type of
system, the relevance of this analysis to physical situations might be questioned, but they reported

good agreement with their experiments.

§2.5 Additional work on flow over compliant plates
The possibility of the stabilization of the Blasius boundary layer by a compliant plate was

reconsidered by Carpenter and Garrad (Garrad and Carpenter 1982, Carpenter and Garrad 1985,
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1986). They considered flow over a flexible plate with linear wall properties, and allowed for
the effect of a 'fluid substrate’ in a reservoir behind the plate. Garrad and Carpenter (1982)
examined a compliant plate of finite length, with an inviscid substrate fluid of infinite depth, and
a potential flow with corrections to simulate the effect of a laminar or turbulent boundary layer.
Using the Galerkin method, they found for the laminar case a divergence instability, and for the
turbulent case flutter. The persistence of the divergence instability here even with the inclusion

of viscosity is reasonable, as the flexible surface had finite length, which may promote the

divergence instability.

Carpenter and Garrad (1985, 1986) subsequently performed an in depth analysis of the
linear stability of the infinite length system both with and without a viscous substrate fluid,
considering both the Tollmien-Schlichting and wall-fluid instabilities (in the 1985 and 1986
papers, respectively). Approximate analytical methods were used to examine how different
physical effects alter the stability of the different waves, thereby illustraiing the behavior of the
wave types of Benjamin and Landahl. The linear stability analysis of the TSI was carried out
numerically to account for the full effects of viscosity, using a shooting algorithm. For the flutter
instability this numerical solution was supplemented by an analytical analysis using Benjamin’s
(1963) approximation to the pressure fluctuation caused by a boundary layer. They then
addressed the question of whether Kramer’s (1960) experiments could have shown significant
postponement of the transition to turbulence, and concluded that this was in fact a possibility.
Their 1985 paper also includes a review of the literature on the theoretical and experimental
stability analyses for flow over a flat plate. Other such reviews are those of Gad el Hak (1986)
and Riley etr.al. (1988).

More recently, Carpenter and Gajjar (1990) formulated a general multi-deck asymptotic




14

theory for the stability of the Type B (travelling wave) flutter instability in flow over a compliant
plate of infinite length. This is significantly less computationally intensive than the solution of
the full Orr-Sommerfeld system, but is limited to this flutter instability and the case in which the
critical layer (where the phase speed of the disturbance becomes equal to the flow speed of the
base flow) is distinct from the viscous boundary layer at the wall.

Additional investigations of the linear stability of a flow over a compliant surface are
those of Duncan ez.al. (1985) and Evrensel and Kalnins (1985, 1988). Duncan et.al. considered
a potential flow with a phase correction to the perturbation pressure to simulate a boundary layer,
while Evrensel and Kalnins in 1985 considered a potential flow, and in 1988 a fully viscous
profile. The (linear) stability calculations in each case differ from those of Carpenter and Garrad
(1985, 1986) primarily in the wall model chosen; these authors consider the wall to be an elastic
or viscoelastic solid of finite depth and solve the appropriate equations for the behavior of such
a material to determine the wall motion. Pierucci and Morales (1990) considered the equivalent
problem for the TSI in plane Poiseuille flow with elastic (undamped) walls, but their conclusions
are questionable due to their assumption that the critical wave number remains unchanged with

the introduction of wall compliance.

§2.6 Other approaches
In addition to the stability analyses described in the preceding sections, other methods
have been used to obtain a better understanding of the nature of the coupling of flow to compliant
structures and relevant applications. In this section we briefly review some of these studies.
Walsh et.al. (1991) modelled expiratory flow in the trachea with a geometry consisting

of two concentric cylinders, the inner of which has an undamped, untethered flexible wall. Using
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curved-shell flutter theory with one-dimensional inviscid fluid equations, they considered the axial
displacements of the wall to be much larger than the lateral displacements. With these
assumptions, they found a long-wave flutter instability.

Brazier-Smith and Scott (1984) considered the linear analysis of an inviscid flow over a
temporally forced undamped plate with bending stiffness. As the system is both undamped and
forced it is unstable, and the resulting instability was studied to determine whether it is absolute
or convective. Carpenter and Garrad (1986) compared their results with those of Brazier-Smith
and Scott by calculating the group velocity of the disturbance to the system as the derivative of
the phase speed with respect to wave number, and found good agreement. Lucey and Carpenter
(1992) presented a similar but numerical analysis for an inviscid flow over a forced compliant
plate of finite length. They were concerned exclusively with the divergence instability, which was
isolated through consideration of the energy of the system.

A full numerical solution of the Navier Stokes and compliant wall equations was obtained
by Domaradzki and Metcalfe (1987) for flow over a flexible plate, and used to determine the
na..re of the distribution and dissipation of energy for the different wave types of Benjamin and
Landahl. For Type A waves the energy dissipation has a local maximum near the wall, while for

Type B waves there is little energy activity there. Type A waves are stabilized primarily by the

‘boundary layer region of fluid, while wall dissipation is the main stabilizing factor for Type B

waves. These observations are clearly representative of the general characterizations of the given
wave types.

Sen and Arora (1988) approached the problem of flow over a compliant wall by using
a kinematic formulation of the wall boundary conditions that permits analysis of the flow without

specification of the specific material properties of the wall. These properties may then be back
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calculated given the wall dynamics. By thus separating the nature of the wall model from the
actual analysis of the flow, they proposed that walls with optimum stabilization capabilities could
be determined. A general understanding of the instability for flows with compliant boundaries
was also the objective of Yeo and Dowling (1987), who reconsidered many of the fundamental
stability theorems for inviscid flow over a rigid surface to extend their validity to the case of a
compliant wall.

Recently, there have been a few non-linear studies of the TSI for Poiseuille flow in a
channel. Rotenberry and Saffman (1990) undertook a weakly non-linear analysis of the instability
and derived a Ginzburg-Landau equation for the amplitude of the bifurcating solution. The walls
considered were simple elastic membranes (with allowance for damping), and they found that
when these are sufficiently flexible the bifurcation to the TSI goes from being subcritical, as is
the case for a channel with rigid walls, to supercritical. Rotenberry and Saffman also proved an
extension of Squire’s theorem for Poiseuille flow in a compliant channel. Rotenberry (1992)
considered the same channel system with the addition of tension to the channel walls, and inferred
the criticality of the bifurcation from the shape of the curve of disturbance energy as a function
of Reynolds number. He concluded that while sufficiently flexible walls may render the
bifurcation supercritical, the magnitude of the supercritical branch is in fact very small, so that
for finite but small distances from the base Poiseuille solution the bifurcation appears subcritical.

Thus wall flexibility does not quantitatively change the character of the TSI.

§2.7 Conclusions
These studies show that the effects of wall and fluid damping are significant in

determining the nature of the flutter instability, and that their influence is often singular in nature.
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Thus our model is developed to accurately include these effects, and is two-dimensional to allow
for the effect of transverse variation in the flow speed in the channel (which has not been
previously considered iﬁ channel studies of the flutter instability). The similarity between
previous results for and méthods used in the study of more rigid (uncollapsed) pipes and
collapsible tubes suggests that the channel model we develop will also be applicable to a wide
range of systems, though we are specifically interested in its application to the lung airways and

wheezing lung sounds.




CHAPTER 3: MODEL DERIVATION

§3.1 Derivation of nondimensional equations and boundary conditions

To model a partially collapsed flexible tube we consider a two-dimensional channel with
compliant walls; through this flows an incompressible Newtonian fluid. In this chapter we derive
the linear stability equations for this system with a basic state consisting of a flat walled channel

and a given laminar flow.

LLLLLLLLLLL L LSS LSS S LLLLLLLLLL

7

I

ST S

Figure 3.1 Flexible walled channel system. Walls are spring supported and
damped, and a coordinate system is fixed to the channel midline;
dimensions are as shown.

The system under consideration is shown in figure 3.1. The walls of the channel are
damped flexible plates supported by an array of springs attached to a rigid backing; it is assumed
that this continuous array of linear springs models the elastance of the tube and the material

supporting it. We define a coordinate system centered in the channel with axial and transverse
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coordinates x” and z". As indicated, the half channel width is b", so that the undisturbed location
of the walls is z* = + b". Denoting the (x",z") location of a point on the lower wall as U™ =
(U",W"), the nonlinear von K4rm4n plate equations governing the normal and tangential motion

of the wall are

FW'  poepeedW" _ 12D° QU FWr FUTIWT | QW FW

poh* +2p,0"G” - ) +
ot at® h*?  ox® ox* ox* ox” ox*  ox™
4117+ 211/ *
D OW W B Wbty + (SV-S) = 0
axnd axt2 (3.1)
and
» . * 2F7e

p;h.azU +2p;h.H.aU N 12D (aU .
at¢2 atc ht'z ax¢2 (3.2)
FwW* aw* T
PEEEESS— R S'T - S = O
T E)x.) ( Ext)

(Sapir and Reiss 1979), where py,” is the density of the wall material, h” the wall thickness, G*
and H" the coefficients of normal and tangential damping in the wall, D" the flexural rigidity of
the plate, T" the imposed longitudinal tension, E" the spring constant (elastance) of the spring
supports, and S~ and ST the normal and tangential stresses on the wall, respectively, with
subscript ’ext’ indicating stresses acting from the region extemnal to the wall. As written, these
equations apply to the lower wall of the channel. In the development that follows, we for
simplicity treat only the equations for the lower wall; in all cases similar equations apply at the
upper wall. In equations (3.1, 2) and those following, a superscripted asterisk indicates a
dimensional variable.

The motion of the fluid is given by the Navier-Stokes equations, in vector form
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po(-aal‘ + ut .V‘uo) - __Vop. + vnVc?.u-o (33)
t°
and

Vo ,un = 0 (34)

where u’ = (u',w") is the fluid velocity vector in the x™-z" plane, V" the two-dimensional (2D)
gradient operator, V"2 the 2D laplacian, and p*, p” and v" the fluid density, pressure and viscosity,

respectively. The fluid must satisfy the kinematic and no slip conditions at the wall,

n-u = n-a_lj:. and 1T-u*= 1-2.2, (3.5)
ar* at*

where n and T are unit vectors normal and tangential to the wall. Hereafter we denote partial
differentiation with subscripts.

Equations (3.1-5) are nondimensionalized using a velocity scale 4, length scale L, time
scale T, = L / 0 and pressure scale = = p° 0% we generally take L = b’ (the half channel width)
and G = (E” b" / p)'?, an elastic wave speed of the wall. Introducing the nondimensional variables
U=UW=U/L u=@w=u/a t=t'/T,, x2)=x,2)/L andp=p /= (and

noting that the nondimensional stresses are S™" = ™' / m), equations (3.1) and (3.2) become

MW, + 2GW, - d(UW_ + U W, + (W,}W_)

. 3.6
+BWm—TWn+E(W+bT) s (SV-Sh) =0 39

and

MU, + 2HU, - d(U_ + W_W,) + (ST - Sge) = 0. G
Nondimensional parameters appearing in (3.6) and (3.7) are M = (p,"h* /p'L), G=MLG’

/G, H=MLH /8,d=12D /h?Lp ¢} B=D"/L*p' % T=T /Lp @ andE=
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E' L/ p (=1 for the scaling indicated above). These parameters are respectively the wall to
fluid mass ratio, and the non-dimensional wall characteristics: normal and tangential damping,
bending stiffness, flexural rigidity, imposed longitudinal tension, and elastance.

The stresses in (3.6) and (3.7) are found from consideration of the fluid stress tensor G,
in terms of which SN=n - ¢ - n and ST=1-0 -n. Assuming deflections of the plate to be

small, these are

2%,y and GRS (3.8)
R R

w w

SV =-p +(

where R, = G L /v is the Reynolds number. We have chosen the notation R, to emphasize that
this Reynolds number, due to our choice of 0l as a wall elastic wave speed, is related to the wall
elastance.

It is convenient to rewrite the Navier-Stokes equations (3.3) and (3.4) in stream function
form to eliminate the fluid pressure. Nondimensionalizing as above and introducing a stream
function ¥, where (u, w) = (¥,, -¥,) (so that the continuity equation (3.4) is automatically

satisfied), equation (3.3) becomes the vorticity equation

vy, - RLAZW AL AL (3.9)

w

where A? is the two-dimensional biharmonic operator, (3,* + 2 92 3,2 + 9,%). The unit vectors n

and 1 in (3.5) are

1
(W2 + )2

1

n e —
(W2 + 1)\2

(-W,1) and 1 (1, W), (3.10)

so that on introduction of the stream function, the kinematic and no slip conditions (3.5) become
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_WI\PZ - \Yx
\Ill - WI‘I’I

-W.U, +W, and (3.11)
U +WW, atz=1%1.

§3.2 System linearization ané simplification

A basic solution for the system defined by equations (3.6-7), (3.9) and (3.11) has flat
walls (U = 0, W =+ 1) and a given stream function ¥, corresponding to the flow profile being
considered (discussed below). Implicit in this base state is the assumption of a pressure gradient
external to the flexible walls to maintain the flat walled configuration. We assume that the base
flow is parallel, that is, that ¥, is a function of z only, and write d'¥,, / dz = u,(z), where uy(2)
is the base axial flow velocity in the channel.

To determine the stability of this base state we use linear stability theory and introduce
perturbations (U’,W’) and y to the base wall position and stream function respectively. In the

usual manner, we write these disturbance quantities in normal modes, so that

(U, W)

(0,-1) + (U"\W")
‘P ’

(0,-1) + (L, w)exp(ik(x - ct))
¥ 4y (3.12)

Y, + o(z)exp(ik(x - ct).

Plugging these into the governing equations and linearizing in perturbation quantities, linearized
stability equations are obtained. The vorticity equation (3.9) becomes the Orr-Sommerfeld

equation,

K, - ©)(Q” - K@) - ku"@ + Ri(qfv S 2K2" + k') = 0, (3.13)

w

and the kinematic and no slip conditions (3.10) become

—ikcxy=¢ +u/o and @ =(c - u)o, (3.14)

where u, and @ are, after linearization, evaluated at z = £ 1. Using (3.14) to eliminate the wall
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variables from (3.6) and (3.7), we obtain after substituting (3.8) for the fluid stresses (and

eliminating the pressure in (3.8) using (3.3))

(-(kcP*M - 2ikcG + Bk* + Tk* + E)ko +
i(c - uy)
R

w

(3.15)

k(c - uy)(u @ + (c - u)Q’) - (¢ - 3k%¢") =0

and

(-(kc)*M - 2ikcH + dk®)((uy - )@ - Qu,’) -

| k - 3.16
! c(;_?__ ©) (¢” + k2¢) = 0. (316

w

Again, consistent with linearization, (3.15) and (3.16) are evaluated at z = -1.

By assuming disturban&:es to be divisible into *symmetric’ and 'antisymmetric’ modes,
we may restrict attention to the lower half of the channel. For symmetric disturbances the
channel walls oscillate out of phase with one another (in a varicose shape) so that the disturbance
stream function must satisfy conditions of no cross flow at the midline; for antisymmetric
disturbances the walls are in phase (a sinuous shape) and we require no axial flow at the midline.

These conditions are

7

@ =9”" =0 (symmetrichc or ¢ =¢” =0 (antisymmetric). 3.17)
Equation (3.13) with boundary conditions (3.15-17) constitutes an eigenvalue problem for
the disturbance stream function @ and eigenvalue c. The real and imaginary parts of ¢ are the
phase speed and growth rate, respectively, of the disturbance; instabilit.y thus sets in when the
imaginary part of ¢ becomes positive, and it is of interest to determine the conditions for which
this occurs. The sign of the real part of ¢ determines whether the disturbance travels upstream

(negative sign) or downstream (positive sign), and the product of the wave number k and the real
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part of ¢ (over 2x) gives the frequency of the oscillations. For simplicity we assume that
tangential wall inertia and damping may be neglected, that is, that we may discard the first two
terms in the tangential boundary condition (3.16); comparison of the numerical solution with the
resulting modified boundary condition with those using the full condition shows the two to be
indistinguishable. If the tangential stress is also omitted from equation (3.16) we recover the no
slip condition used by Benjamin (1960) and others, which does not include the effect of

horizontal wall motion.

§ 3.3 Specification of the base flow profile

To complete the specification of the Orr-Sommerfeld system derived in §3.2, a base flow
profile must be chosen. As a solution for flow in a channel, this Will be either a developing
(boundary layer) or fully-developed (Poiseuille) flow; we are interested in modelling short tubes,
and so are concemed with the developing flow profile. However, there is no closed form solution
for the corresponding stream function; as a result there are a large number of approximate
solutions. These may be divided into four general categories: integral methods (Schiller 1922;
Campbell and Slattery 1963); models linearizing the inertial terms in the Navier-Stokes equations
(Langhaar 1942; Sparrow et.al. 1964); numerical solutions of the boundary layer (Bodoia and
Osterle 1961) or full equations (Brandt and Gillis 1964; Wang and Longwell 1964); and axially
patched or asymptotic solutions (Schlichting 1934; Van Dyke 1970; Wilson 1970, 1971). A good
summary of these categories and solution methods appears in Schmidt and Zeldin (1969).

We approximate the developing profile in two ways: first, by using a uniform (plug)
profile, and second, by solving the boundary layer equations using either finite difference or

perturbation methods. For the flow regimes in which we are interested the flow is uniform over
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most of the channel, with nonuniformity being restricted to a small region (boundary layer) near
the wall. The flow is thus quantitatively similar to a plug flow over most of the channel width,
so that it may be hoped that meaningful predictions may be obtained from the analysis of this
much simpler flow; this analysis appears in Chapter 4. Of course, the results so obtained must
be evaluated carefully, as the plug flow does not satisfy the no slip conditions at the wall.

Our finite difference solution uses a second order scheme with a nonuniform grid to solve
the boundary layer equations; full details of the method appear in Appendix A. This solution is
able to provide the flow profile at any location in the channel up to and including the point of
fully developed flow, but more difficult to use in the Orr-Sommerfeld system as any change in
the velocity of the base flow requires that the flow profile be recalculated. However, the
numerically determined profile is useful for evaluating the perturbation solution, which we use
in our stability calculations.

We follow Schlichting (1934) in the development of a perturbation solution for
developing channel flow. A uniform flow is assumed at the channel inlet that, as it progresses
down the channel, assumes a profile with growing boundary layers at either wall. For short
distances from the channel inlet these boundary layers form in the same manner as the Blasius
solution for flow over a flat plate, with the caveat that mass conservation requires that the flow
in the central region of the channel accelerate to compensate for the decreased flow at the walls.
Thus for the upstream portion of the channel the difference between the channel and flat plate
geometries may be incorporated as a perturbation to the Blasius profile.

We therefore model the channel flow using the steady boundary layer equations, in

stream-function form
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L L]

VoV = Yo = UTUL + vy (3.18)
Here v is the dimensional form of the base flow stream function ‘¥, U" (x°) is the velocity field
outside of the boundary layer and a new transverse coordinate y* = b" + z* has been introduced
to mimic the transverse coordinate usually used for flow over a single plate. The stream function

y" is written as a perturbation expansion that will at leading order recover the Blasius solution,

v~ §Tbt(ef,(n) + EL,(M) + E£(M) + ), (3.19)
where € = (v x* /b S")?, S" is the velocity of the initial (uniform) flow, and N =y /(e b")
is the similarity variable for flow over a flat plate. The free stream velocity U°(x) may be
determined from mass conservation, as follows. For the flow rate at the inlet to be equal to that
at any point downstream, we must have S"b" = U(b" - §,"), where 8, is the displacement

thickness of the boundary layer. By definition

"
S U= |(U*-u)dy = eb‘f(lf‘ - S"(f + &f) + +++))dn, (3.20)
1]

Ok—,ﬁ'

where 7, is a point outside of the boundary layer. Using the requirement for constant flow rate
to eliminate ,” from (3.20), we obtain, after a little rearranging,

U* ~8*(1 + €K, + &K, + +-+), where
Kn =Kn-ln1 -f,.('ﬂl) (KOE 1)

(3.21)
Using the expansions for " and U"® in equation (3.18), we obtain on collecting powers of € a
series of problems for the f,, the first three of which are

zfllll +‘f1f-lﬂ - 0,

2f2”/ +f1f2” "f]lfz’ + 2f1”f2 = _Kl’ and (3.22)
2f3”’ +f1f3” _ 2fl'f3’ + 3f1”f3 = "2f2f2” + (f;l)Z _ K12 - 2K2'
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Boundary conditions for (3.22) are £,(0) = £,/(0) = 0 and f,” = K, asn — o, which require that

" satisfy the no slip condition at the channel wall and match with the outer flow U” at the upper
edge of the boundary layer. .

The first of equations (3.22) is that for Blasius flow over a plate; this and the problems

for the correction terms are solved in a straightforward manner using a multiple shooting routine

(DBVPMS from IMSL). The base flow u, is then given by

Uy(z;x) ~ S (f7(M) + /(M) + 2/ (M) + -++), (3.23)
where by definition, £(x) = x'* / (R, S) and N = (z + 1)/ &(x). In the derivation of the Orr-
Sommerfeld system, u, was assumed to be a function of z only; we thus evaluate € for a fixed
value of x = xo to eliminate the dependence on the axial coordinate. Because € varies as X7 it
is then necessary to impose a downstream limit on X, to maintain the validity of the perturbation
solution for u,. Following Schlichting we choose to restrict X, so that € is sufficiently small that
the successive terms of the solution for u, remain well ordered, that is, f,” > &f,” > €fy". This
requires that € be less than 0.1455, or by extension that we choose X, < (0.1455Y’ R, S. If
additional terms are included in the expansion for u, the downstream constraint on x, becomes
more severe. (e.g., Collins and Schowalter 1962 cite € < 0.0707 (x, < 0.005 R,, S) for a seven
term expansion.)

The solution (3.23), normalized by the magnitude of S, is shown in figure 3.2. In 3.2a
u, and f;’ (the Blasius solution) are plotted as functions of z and compared with the finite
difference solution to the boundary layer equations, for a representative set of parameter values.
The agreement between the perturbation and numerical solutions is seen to be good. In 3.2b the
values of f,/, € f, and € f,” are shown for the same choice of parameters.

The advantage of using the perturbation solution for u, (3.23) arises from its formulation
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in terms of the Blasius similarity variable. With the velocity profile tabulated as a function of
this independem variable, the value of u, may be found for any given position (x,,z) by
calculating the value 6f n corresponding to that point (at the Reynolds number and flow speed
being considered) and then interpolating using a cubic spline routine (from Press et.al. 1990) to
find the corresponding value for u,. Solutions to the stability problem (3.13), (3.15-17) with the
perturbation solution for u, are obtained analytically for long waves and numerically for

disturbances with arbitrary wavelengths in Chapter 5.




CHAPTER 4: ASYMPTOTIC AND EXACT SOLUTIONS FOR
A PLUG FLOW BASE STATE

§4.1 Introduction and equations

The analytical study of tﬁe Orr-Sommerfeld equation for non-uniform base vélocity
profiles is a difficult task even for the case of a system with rigid walls, as it involves the solution
of a non-constant coefficient, complex valued, fourth order eigenvalue problem. To facilitate the
development of an analytical solution, we therefore choose to approximate the developing flow
profile with a uniform (plug) flow, as indicated in §3.3. In this case, it is possible to solve the
Orr-Sommerfeld system using the method of matched asymptotic expansions to obtain an explicit
solution for the eigenfunction ¢ and eigenvalue c. As the problem with plug flow has constant
coefficients, it is also possible to obtain an exact solution, which determines the eigenfunction and
eigenvalues implicitly. We present the matched asymptotic and exact solutions in §4.2 and §4.3,
respectively, and show results for both cases in §4.4.

For a plug base flow with nondimensional flow speed S, the Orr-Sommerfeld equation
(3.13) becomes

k(S - c)(9” - K@) + RL(Q)“" - 2k*¢" + ko) = 0. 4.1)

w

At the wall (z = -1), boundary conditions on ¢ are (3.15) and (3.16), or

(-(kc)* -2ikcG + Bk* + Tk* + 1)ko +
?

(S - cYko + i(SR— (4.2)

C) ((pnr _ 3k2(pr) =0

w

and
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dkg’ +;_c(<p"+k2q>)=o, (4.3)

w

and at the midline (z = 0) ¢ must satisfy symmetry or antisymmetry conditions (3.17),

¢ = ¢” =0 (symmetric), or ¢’ = ¢”" =0 (antisymmetric). (4.4)
In the equations following, we denote the term ((k ¢’ M- 2ikcG+ Bk*+ TK + 1)

appearing in (4.1) as A, a function of k and c.

§4.2 Asymptotic solution
The plug base flow introduced in §4.1 is valid in the limit of Reynolds number R,, — oo,
so that it is appropriate to expand ¢ and c in power series in the small parameter ¢ = R, as
O~ +EQ +EP + - 4.5)
C~C, +8C + &, + "

Plugging (4.5) into (4.1) and letting € go to zero, we obtain the leading order problem

k(S - c)(@,” - kK*g,) =0 (4.6)
with midline boundary conditions (4.4). Because in the limit ¢ — O the two highest derivatives
in (4.1) are lost, the perturbation is singular and it is not possible for this reduced problem to
satisfy all of the boundary conditions. A boundary layer is introduced to admit the effect of
viscosity at the wall, so that the solution to the outer problem must satisfy only the midline
conditions; the inner (boundary layer) solution satisfies the conditions at the wall and matches to
the outer solution at the edge of the boundary layer. Equation (4.6) is the Raleigh equation (see,
e.g., Drazin and Reid 1981); to consider inviscid stability we would require that ¢ solve this and

the first of either the symmetric or antisymmetric boundary conditions (4.4), and then demand that
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the normal boundary condition at the wall (4.2) be satisfied.

The solution of (4.6) when the wave number k is non-zero and the leading order phase

speed ¢, is not equal to the flow speed § is, up to an arbitrary multiplicative constant,

@, = sinh(kz) or @, = cosh(kz) 4.7
(for symmetric or antisymmetric disturbances, respectively). If the wave number k or the
difference S - ¢ is small (O(e?), it is no longer possible to construct an asymptotic solution
differing significantly from the exact solution presented in §4.3, and we thus do not deal with
these possibilities here (cf. §4.3). The solution (4.7) is in fact the exact solution to (4.1) for the
region away from the wall, so that all correction terms @, (n > 0) are identically zero.

To find the inner solution, a new independent variable { is introduced to stretch the
boundary layer near the wall. With the small parameter 3(¢) defining the boundary layer width,
{ is defined by { = (1 + z) / 8(¢). We choose d to retain the highest derivative term in the Orr-
Sommerfeld equation as e tends to zero, which requires &(e) = ¢; this choice in fact motivates
the use of € as our expansion parameter. Rewriting (4.1) in terms of the inner variable { and

letting ®({) = 9(z), we obtain

(@ - ik(S - c)®”) + e2k2(ik(S - )@ - @) + e*k‘D = 0. (4.8)

Similarly rewriting the wall boundary conditions (4.2) and (4.3) gives

(k(c - SPY - i(c - S)D”) + ekDA + 3ie’k*(c - S)® =0 4.9)

and

dk® + eic®” + e*ik’c® = 0, 4.10)

both at { = 0. These give two boundary conditions on @; the inner solution must also match with




33

the outer solution @ at the edge of the boundary layer. This matching condition is formulated
mathematically below.

Expanding @ in powers of e as

O ~D +eD + D, + - 4.11)
and introducing this and the expansion for ¢ (4.5) into the inner equation and boundary conditions,

a series of problems for @, (n = 0,1,...) are found at successive orders in . At leading order,

= d* _ . , d?
9P, = 0, where Q=(S—c0).d7—tk(s - Cy) - 4.12)
with boundary conditions
R® =0, where R=k(c—S)d—id3 at {=0 4.13)
10— Yo 1= 0 az PPN = :
and
dk®;(0) = 0. (4.14)

Equation (4.12) is homogeneous with constant coefficients, and has the general solution

@, = a, + ay,l + ay,ebt + ay,et, (4.15)
where B, =+ (ik(S- c)'. To match with the outer solution we use the method of
intermediate limits (Kevorkian and Cole 1981) and introduce the intermediate variable €=
(1 + z) / n (where €|ln £] << N(e) << 1, with n(e) — 0 as ¢ — 0). Rewriting (4.15) and (4.7)

in terms of & and then reexpanding (4.7) for small 1, we obtain
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n _ﬂ_§ p¢25
D, = ay + aoz-é-g +ag,e * +ay,e * and 4.16)

9, ~ Y(k) - NKEY' (k) + -;-(nki)’v"(k) b e,

where for notational convenience the term ¥y (k) = -sinh(k) or cosh(k) (for symmetric or
antisymmetric disturbances, respectively) has been introduced. The appropriate matching

condition is then

Lm (®-9¢)=0, 4.17)

¢ >0

§ fixed
which requires that a,, = ¥ (k) and a,, = a,, = 0. The tangential boundary condition (4.14) then

demands that the constant a,,; also be zero, so that

®, = 7(k). @.18)

The normal boundary condition (4.13) is trivially satisfied by (4.18), and the eigenvalue ¢,
remains undetermined; the leading order dispersion relation is found at O(e).

With (4.18), we have at O(e)

9P =0, 4.19)
R ®, = -A kY, (4.20)

(where A, = Ak,c,)), and
dkd)l'(O) =0. “4.21)

Equation (4.19) for @, is the same as (4.12) for @,, so that, after applying the first order matching

condition
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Lim l@-o9)=0 4.22)
- e

§ fixed

and the tangential boundary condition (4.21) we find

O = -ky' (k) + %(_") er-t, (4.23)

The normal boundary condition (4.20) then becomes after a little algebraic manipulation a

quadratic in ¢, which may be solved to give the leading order dispersion relation

e < S-IGP(K) 1
° T +MkPk) 1+ MkP(k)

[(S - iGP(k))* -
4.24)

(1 + MkP(k))(S* - (Bk* + Tk* + l)P(k)]”2
. .

Here P(k) is defined by Pk)= Yy &) /vy’ @) (= tanh(k) or cotanh(k) for symmetric and
antisymmetric disturbances, respectively). As the limit of € going to zero corresponds to the limit
of no viscosity, (4.24) is simply the inviscid dispersion relation for the problem (see, e.g. Grotberg
and Reiss 1984, setting their viscous correction f to zero).

To find the first (viscous) correction to this dispersion relation it is necessary to continue
to order €2 Using the expressions for @, and ®,, (4.18) and (4.22), and collecting terms of

O(e?), @, must satisfy the inhomogeneous equation

LD, = ik?c v B_eht + kT - ik*(S - )Y (4.25)

with boundary conditions
e kY A BY o : 4.26
R ®, = K + 4, i +2k¢c,(Mkc, +iG)Y (4.26)

and
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dk®,(0) = -ikc,y B_. 4.27)

A particular solution for (4.25) is found using the method of undetermined coefficients to be

_ike,y' (k)

2p2

LeP-S + .;_sz;zy(k), (4.28)

2p
so that, after matching and applying (4.27) as at earlier orders,

k*c vy’ (k i,y (k ik%c,y'(k
¢2 - (l ClYS( ) _ lCOY ( ))eb-c _ l C]‘Yz( )
2p° d 2B

LeP-t + .%.k*ﬁ(k). (4.29)

Inserting (4.29) into the normal boundary condition (4.26) gives the first correction to the

dispersion relation,

2 . _ (Bk* 2
oo Mke) + 2ike,G - (BK* + T + 1) (4.30)

' T2B(S - (MkP(k) + 1)c, - iGP(k))

Recalling that B_ = -(i k (S - ¢p))'?, it appears at first sight that this expression is singular as S
approaches c,, However, because of the definition of ¢, (4.24), in this case the numerator of
(4.30) goes to zero more rapidly than (S - ¢,)'?, and there is no singularity. A singularity may
still arise if the remaining term in the denominator, S - (M k P(k) + 1) ¢, - i G P(k), vanishes,
which for G=0 (an undamped wall) and c, strictly real occurs as the flow speed S approaches the
value (M k P(k) + 1) ¢,. The leading order dispersion relation is inviscid, so that when there is
no wall damping c, will in fact be real valued until the onset of instability, and the denominator
may thus be expected to go to zero for some value of flow speed. When wall damping is
included, as it will be in all physical applications, this term becomes complex valued, so that it

is unlikely that it will completely vanish. For small wall damping, however, the imaginary part
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of ¢, is small, and the imaginary part of this term will also be small; thus for lightly damped walls
the denominator may become sufficiently small for ¢, to become O(e™) and the asymptotic
expansion may thus break down.

Because the results for the asymptotic solution developed in this section and those for the
exact solution in §4.3 are similar, we defer further discussion of the dispersion relation (4.24,

4.30) until §4.4.

§4.3 Exact solution

For plug flow the Orr-Sommerfeld equation (4.1) has constant coefficients, so that an
exact solution may be obtained in terms of exponentials. Two of the four solutions are those of
the inviscid (outer) solution derived above, sinh(kz) and cosh(kz) (which are appropriate for
symmetric and antisymmetric disturbances, respectively). To determine the remaining two
(viscous) solutions, let @ = e™ inserting this into (4.1) gives

k*(s-c)(mZ-1)+Rik‘(m‘-2m2+1)=o. (4.31)

w

Recognizing that m = 1 correspond to the inviscid solutions already isolated, and assuming k #

0 (we return to this possibility below), the general solution for ¢ is then given by

iR
¢ =Ag(kz) + A,g(kmz), where m> =1+ lk”(S -c), 4.32)

and we have taken g (x) = sinh(x) or cosh(x) according to whether symmetric or antisymmetric
disturbances are being considered.
For simplicity of analysis, we assume that the tangential boundary condition at the wall

may be replaced by that corresponding to no horizontal motion, (Uo(-1) - ¢) ¢’ - u’-1) ¢ =0 (c f.
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§3.2), as this assumption makes little difference to the solution obtained. (This is verified with
the numerical solution of the full system formulated in chapter 5.) Application of this condition
and the normal wall boundary condition (4.2) yields a second order linear homogeneous system

for the coefficients A; and A,,

[g(—k)A g(~km)A - (S - c)’kmg’(—km)] Al_, @3
(S -0)g’(-k) (S -c)ymg'(~km) A, '

To obtain (4.33) the relation g’ (k x) = k? g * (k x) has been used. The eigenvalue ¢ must be
chosen to zero the determinant of the coefficient matrix on the left hand side, which gives the

dispersion relation

km(S - ¢)g’(-km)g’'(-k) x

4.34
(A[P(‘km) _ P(—k)]_(s_c)2]=0. ( )
km k

In (4.34), as in the asymptotic solution, P(x) has the value tanh(x) or cotanh(x) for symmetric or
antisymmetric disturbances. Solutions of this dispersion relation arec =S,c =S -ik Re’, and
c chosen to zero the parenthesized term in the relation. The first two of these possibilities always
yield stability, so that it is the last that is of interest. Values of ¢ zeroing the parenthesized term
are found in a straightforward manner using a numerical root finder (DNEQNF from IMSL).
Note, however, that ¢ = S is also a solution for this expression (when ¢ = S, m = 1, and terms
involving P cancel); this results in some difficulty in the numerical resolution of other roots when
they approach S.

Information about the limit of infinite channel width for (4.34) may be obtained by
scaling lengths in the problem on L= Ly = (D/E’)", instead of b" (cf §3.1). After

appropriately redefining the wall and fluid parameters (R, M, etc.; note that B=1 for L=Ly,), the
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dispersion relation (4.34) is changed only through the introduction of a factor of (b"/Ly,) in the
arguments of g and P. As seen in §4.4, symmetric disturbances are the least stable, and we thus
consider P(x) = tanh(x) here. In the limit of infinite channel width, (®'/Ly) = o, so that

P(kmb’/Ly,) and P(kb"/Ly,) both go to 1. The parenthesized term in (4.34) thus becomes

(A[—_l_+_l_]—(5-c)2)=0, (4.35)
km k

where S and c in (4.35) are scaled on @ = (E'Ly, /p’)'” and k on Ly,'. Assuming that c is real
(i.e. that points being considered lie on the neutral stability curve) and squaring once to get rid

of the square root in the definition of m, (4.35) becomes on separating real and imaginary parts

k*q® + 2R _A,q* - 2kA —ZR"AA=0 d
q w Iq Rq k R I an
(4.36)

R kq* -2R A.q? Ry (a2 2y =
w q - w Rq —2kA1q+T(AR‘A')—O.

In (4.36) =S - ¢ and A = Ag + iA,. Equations (4.36) are solved using Newton’s method (we
again use DNEQNF from IMSL); results are shown in §4.4.

If the wave number k goes to zero, the Orr-Sommerfeld equation degenerates to o™ =
0, and the boundary conditions at the wall to i Re'(S-¢)¢” =0 and (S-c¢) ¢ =0. For
symmetric disturbances the only non-trivial solution is ¢ = S, which is stable. For antisymmetric
disturbances the only eigenfunction is trivial, and hence stable; this corresponds to the movement
of the fluid across the midline of the channel as a solid body. Thus, unlike the case of a
developing flow profile (cf. Chapter 5) the limit k — 0 is not of interest for the purposes of

determining the onset of instability.
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§4.4 Results
The asymptotic dispersion relation (4.24), (4.30) has two roots, the flutter modes of the
system. At zero flow speed these have equal growth rates and phase speeds of equal magnitude
but opposite sign; the root with positive phase speed we call root 1 and the other root 2. Asthe
flow speed is increased, root 2 is slowed until a flow speed Sp, at which it reverses direction and
travels downstream. In an undamped system (when wall damping G and viscosity e are 0) the
phase speeds of roots 1 and 2 coalesce at a highér flow speed, S, at which point the growth rates
of the roots split from zero to become positive and negative, heralding instability; this transition
is shown in figure 4.1. As noted in Chapter 2, the addition of wall damping breaks the unstable
equilibrium existing for flow speeds S between Sy, and Sg, so that instability appears for root 2,
atS = S,. The addition of viscosity may restabilize the system so that flutter reappears, at a flow
speed larger than S, as shown by Grotberg and Reiss (1982, 1984); this is shown in figure 4.2,
which shows root 2 of the asymptotic and exact dispersion relations.
The agreement between the asymptotic and exact solﬁtions is clearly very good in figure
4.2, but this changes when the wall damping is decreased slightly, as in figure 4.3 (which shows
roots 1 and 2 of the dispersion relation in 4.3A and B, respectively). For this case the exact
solution shows that the wall damping is no longer sufficient to destabilize root 2 (which for S
between Sy, and S; is Type A, as defined by Benjamin 1963 and Landahl 1962, and discussed in
Chapter 2), so that root 1 (which is Type B) is instead that which goes unstable. The asymptotic
solution, however, still predicts stability for root 1 and instability for root 2. Figure 4.4 shows
the more physical case of lower wall damping, for which the singularity anticipated in the
asymptotic solution is seen. This singularity may be expected any time the wall damping is small;

however, in the cases in which we are interested, air flow in flexible tubes and the lung airways,
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Flow Speed S

Figure 4.1: Plug flow dispersion relation for undamped system. Solid curve
gives real(c), dashed, imag(c). M=10, B=5, T=0, k=0.5.
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Figure 4.2: Plug flow dispersion relation for damped system, root 2, showing
exact (solid curves) and asymptotic (dashed curves) solutions. e real(c);
O imag(c). M=3190, B=542, T=0, G=16, R,=2230, k=0.1
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Figure 4.3: Plug flow dispersion relation, showing difference between exact
(solid curves) and asymptotic (dashed curves) solutions. e real(c);
© imag(c). 4.3A shows root 1, 4.3B root 2. M=3190, B=540, T=0,
G=15, R,=2230, k=0.1.
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Figure 4.4: Plug flow dispersion relation, showing singularity in asymptotic
solution.  Solid curve gives exact solution, dashed, asymptotic.
e real(c); © imag(c). Root 1. M=3190, B=542, T=0, G=0.054,
R,=2230, k=0.1.
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the solution remains valid for flow speeds up to and including the onset of instability.

The discrepancy between the behavior of the exact and asymptotic solutions of the
problem as wall damping is decreased is a direct result of the assumptions used in the formulation
of the latter. As the expansion parameter ¢ in the asymptotic solution goes to zero the problem
becomes inviscid, so that at leading order the solution is that fbr inviscid flow. Implicit in this
expansion, therefore, is the assumption that the effects of viscosity may be included as a small
correction to the inviscid result, an assumption that is clearly not true in figure 4.3. Thus as long
as wall damping is sufficiently large (by comparison with viscosity) to maintain the stability of
root 1 (the Type B flutter mode) the asymptotics agree well with the exact solution. Héwever,
when the wall damping is smaller, so that root 1 is unstable, there is an order one discrepancy
between the viscous and inviscid solutions for larger flow speeds, and the asymptotics may no
longer be able to accurately model the system. Nonetheless, for walls with sufficiently small
damping and large mass ratios (as in figure 4.4 and noted above), the asymptotic solution is able
to accurately predict instability for root 1 before the appearance of the singularity, and before the
predicted behavior for roots 1 and 2 differs significantly from that in the exact solution. For cases
of interest, root 1 becomes unstable as shown in figure 4.4, before instability is seen for root 2.

In figure 4.5 we show curves of neutral stability (lines along which the growth rate of the
disturbances vanish) for the plug flow base state, for symmetric (4.5A) and antisymmetric
instabilities (4.5B). These give the flow speed at which instability appears as a function of wave
number; points below (above) the curve are stable (unstable). The minima of the curves give the
flow speed Sci" at which flutter appears, and the corresponding critical wave number Kcg.
Comparing 4.5A and B shows that the symmetric mode is the least stable, which is generally true.

In both 4.5A and B curves for both the exact and asymptotic solutions are plotted, and give
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Figure 4.5: Neutral stability curves for plug flow, symmetric disturbances (4.5A)
and antisymmetric disturbances (4.5B). Solid curves give exact solution,
dashed, asymptotic. M=3190, B=542, T=0, G=0.054, R,=2230.
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similar but not identical results; the agreement between the two is, however, better for the
symmetric mode than the antisymmetric mode. In that the symmetric disturbances become
unstable before antisymmetric ones the larger discrepancy in the latter case is physically
immaterial. Both symmetric and antisymmetric disturbances are seen to be stable for long wave
lengths (small k), as noted in §4.3.

Several neutral stability curves, for different values of the wall damping G and mass ratio
M, are shown in figure 4.6. Note that because the mass ratio appears in the definition of G, to
isolate the effect of variation of M it is in this case necessary to allow G to change while holding
G (=b° G*/0) fixed. As the symmetric mode is unstable first, these curves are for the symmetric
instability. For both values of the mass ratio shown (indicated by filled and open symbols,
respectively), increasing the wall damping is stabilizing, which may be expected as the instability
is for these parameter values a Type B instability, which is stabilized by wall damping.
Increasing G also increases the wavelength of (decreases k for) the instability. For the larger mass
ratio (filled symbols), the instability moves to still smaller k. For smaller values of the wall
damping, increasing the mass ratio is destabilizing, which is consistent with the fact that the flutter
instability is destabilized by wall inertia. As both the wall damping and M are increased,
however, the wavelength of the instability becomes long enough that the system is stabilized by
the band of long-wave stability noted above and in §4.3; thus for sufficiently large wall damping
increasing the wall inertia is in fact stabilizing. This is shown in figure 4.7 by plotting just the
minima of the neutral stability curves, St , for different values of the wall damping G. For the
smaller (more physically relevant) values of the wall damping increasing M is destabilizing, but
this is not the case for more heavily damped walls. This figure also compares the results for the

exact and asymptotic solutions; the two are seen to agree reasonably well, with the same essential
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Figure 4.6: Plug flow neutral stability curves for different M, G, showing long
wave stabilization. Open symbols give M=500, filled, M=5000;
o Gx5000=0.1567; v Gx5000=1.567; 0 Gx5000=4.702. Symbols are
located at the minima of the neutral stability curves. B=542, T=0,
R,=2230. G=b"G'/0)
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4.7A

4.7B

Figure 4.7: Plug flow critical flow speed Scg" (4.7A) and flutter frequency (4.7B)
as functions of wall damping. © M=500, exact solution; « M=5000,
exact solution. Dashed and dotted curves give asymptotic solution for
M=500 and M=5000, respectively. B=542, T=0, R,,=2230.
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features being present in either case, though the values of Scx” differ slightly. As a result,
subsequent figures show only the exact solution, with the understanding that the asymptotic result
may be expected to retain the same features for slightly different critical flow speeds. Figure 4.7B
shows how the variation of G and M affects the flutter frequency at the onset of instability;
increasing either of the wall mass or the wall damping decreases the frequency, which in either
case is consistent with physical intuition and observation. This also shows that the predictions
for the critical flutter frequency made by the asymptotic and exact solutions are in very close
agreement. Thus if the flutter frequency is the object of interest, the asymptotic solution (which
is explicit and hence easier to use) may be used with little or no loss of accuracy.

Figure 4.8 shows how variation of the wall elastance and bending stiffness B changes the
stability of the system, by plotting (in 4.8A) Sci’ as a function of the wall elastance E
(nondimensionalized on (p° v'%/ b*?)x10*) for different values of B. For this figure Sy’ is
scaled on (v /b")x10?% and the frequency (shown in 4.8B) on v /b"% Increasing E or B
stabilizes the flutter instability, and increases the frequency. The frequency increases
approximately as E”?, which is consistent with the results of Grotberg and Reiss (1984). In that
the flutter instability depends fundamentally on wall elastance, the increase in Scg" with increasing
E is as expected; in the limit of infinite E (a rigid wall), the flutter instability ceases to exist.

In figure 4.9, we show the effects of variation in the half channel width b, for different
values of the wall elastance E. For later comparison with the results presented in Chapter 5, we
scale velocity on (V' / X, )x10%, length on x,” and frequency on (V' / X, 2), where x, is a fixed
distance from the mouth of the channel. (We have chosen X, to be equal to the width of the
channels considered in figures 4.1-8.) As the half channel width is increased, the effective

viscosity in the channel decreases, which stabilizes the flutter instability, as seen in figure 4.9A.
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Figure 4.8: Plug flow Scgf (4.8A) and flutter frequency (4.8B) as functions of
wall elastance for B=2.688x10* (0) and B=2.688x10° (). E" scaled on
(" V' /b *)x10% flow speed on (v'/b")x10% and frequency on
(v" /b"?). Other parameters as figure 4.4, modified for scaling.
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Figure 4.9: Plug flow Sci" (4.9A) and flutter frequency (4.9B) as functions of
half channel width b / x,” for E* / (p° v"2 / x4 *)x10* =500 (v) and E =
900 (v). Velocity and frequency scaled on (v* / x, )10 and (V" / x," 2).
X, chosen = b in figure 4.4; other parameters as figure 4.4, modified for

scaling.




53

In the limit of very wide channels the critical flow speed levels off, as seen at the end of the
channel widths shown. Increasing the wall elastance is, as seen in figure 4.8, stabilizing. In
figure 4.9B the frequency of the flutter instability at onset is shown as a function of the half
channel width. This shows that as the half channel width is increased through moderate values,
the flutter frequency decreases, but that for very large channel widths it increases again. This
change in behavior may be understood by considering the neutral stability curves giving figure
4.9, which are shown in figure 4.10. These show curves for increasing b, along with the infinite
channel limit (obtained from equations (4.36)). As b is increased, the neutral stability curves
agree with the infinite b limit for disturbances with longer wavelengths (smaller wave numbers).
Thus the critical wave number kg, which initially decreases with increasing b, reverses to increase
towards the infinite channel limit for very wide channels. This increase results in the increase in
flutter frequency shown in figure 4.9B. There is, of course, always a difference between the finite
and infinite channel width curves for very long waves. Note that the channel widths relevant to
physical tubes (e.g. those of the experiments of Gavriely ez.al. 1989) are b < 4 in figure 4.9.
As we are specifically interested in pulmonary applications, it is useful at this juncture
to consider the effects we have discussed above specifically in this context. Wheezing lung
sounds are thought to be symptomatic of airway flutter (Grotberg and Davis 1980); thus the
characteristics that distinguish the lungs of wheezing patients from healthy subjects should relate
to those effects that destabilize the flutter instability. We saw above that these destabilizing
effects include reduction of the wall elastance and bending stiffness, and reduction of the half
channel width. All of these do correspond to the characteristics of asthmatic or lung obstructed
patients’ airways, which have more flexible walls and are narrower than those of healthy subjects.

We directly compare our theoretical results with experimental observations in Chapter 6.




80

Flow
Speed

60

40

e

I, So———

g gea A
—

s

20 -

T
-

O | I | |
0.0 0.1 0.2 0.3 04 0.5
Wave Number k

Figure 4.10: Plug flow neutral stability curves for different half channel widths.
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CHAPTER 5: NUMERICAL AND ANALYTICAL SOLUTIONS FOR
DEVELOPING BASE FLOW

§5.1 Introduction and equations

In this chapter we develop solutions to the Orr-Sommerfeld system derived in Chapter
3 with a developing base flow. An analytical solution is obtained for long wave disturbances in
§5.2, and a numerical solution for disturbances of arbitrary wavelengths is formulated and tested
in §5.3 and §5.4. Results are presented and compared with the plug flow solutions of Chapter
4 in §5.5, and a short discussion of the limit of infinite channel width, which turns out to be of
mathematical interest, appears in §5.6. In Chapter 6 the solutions presented in this chapter are
compared with experimental results. Both the analytical and numerical solutions presented below
are general to flow profiles other than the developing flow, and we are therefore able to check
our results through consideration of problems for which results are already known.

For flow profiles u,(z) satisfying the no slip boundary conditions, such as the developing
flow solution (3.23), the Orr-Sommerfeld equation is

k(uy - c)(Q" - k2Q) - ku,” @ + R_i((p"" S2k2Q" + k49) =0 (5.D)

w

and the boundary conditions (3.15) and (3.16) are

(-(kc)*M - 2ikcG + Bk* + Tk* + 1)k +
ke(cq +u @) - ;_C(q)”' - 3k%¢') =0

w

$.2)

and
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;A2
dk((:(p’+uo'q>)+I_Rc_((p”+k2(p)=0, (5.3)

w

both at z = -1. The midline boundary conditions (3.17) remain

o(0)
9'(0)

¢” 0)

0 (symmetric), or (5.4)
¢III( 0 )

0 (antisymmetric) .

in o
nu

§5.2 Analytical solution for long waves

While it is in general difficult to solve the Orr-Sommerfeld system analytically, as
indicated in Chapter 4, a solution for the case of long waves (k — 0) is more tractable, and is
developed in this section. We consider the limit of no horizontal wall motion here (i.e., reduce
(5.3) to c¢’ + u,’@ = 0 at z = -1) to simplify this analysis; comparison with the numerical solution
(described in §5.3) shows that the results obtained are quantitatively the same as those obtained
with the full boundary condition. In the following we do not a priori specify the base flow

profile u,; specific cases are considered after the derivation. Fork << 1, let

Q~Q, +kp, + - and c~cy +kc; + . (5.5)

Using these in the Orr-Sommerfeld equation (5.1) and letting k — 0, we obtain

o =0, (5.6)
so that ¢, is a cubic polynomial in z. Imposing the boundary conditions (5.4) and the leading

order forms of (5.2) and (5.3), we find

Q =z and ¢, =u)(z=-1). (G}

Here we have normalized @, so that |@,(-1)] = 1. The solution (5.7) is for symmetric

disturbances; we address the antisymmetric mode below. We see from (5.7) that ¢, is strictly real,
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and so must continue to the next order in k to evaluate the stability of the system.

At order k, the Orr-Sommerfeld equation (5.1) is

o = iR, zu” (5.8)

and @, is thus the sum of another cubic polynomial in z and a particular solution satisfying
@, = iR, (u, - zu) (5.9)

(after integration by parts once; further integration is dependent on the choice of the base flow

u,). Applying the boundary conditions (5.4) and the order k terms of (5.2), we find

0, (z=0) , iR[1 - (4 G=-1p] , (510

¢, = -9,,(z=0) + B,z - 7+ ,
1 1P 1 3 S a (z=-1) L2

so that, from (5.3),

(5.11)

¢, = iR, ( u/(z=-1) [ @ ,(2=0) - %<D1P"(z=0) - @ (z=-1) -
(1 - (4 (z=-1))*] ),

1

@ (z=-1)) = ——
1P(Z ) 3u0'(z=—l)

where we have written @, = i R, ®,, to make the imaginary character of ¢, explicit.

Equation (5.11) for ¢, is strictly imaginary, so that ¢, is the growth rate for the
disturbance. To find the critical flow speed at which c, becomes positive, it is necessary 1o
integrate the expression (5.9) for ¢,,. We consider two cases. For Poiseuille flow,u, =1.5 S (1 -
Z?), and we may integrate to find @,, and evaluate (5.11) analytically, obtaining c, =
0.067 i R, (18 $? - 5). Instability appears at Scg™" = 0.527; at this point ¢, = uy'(-1) = 1.581.
These are in good agreement with the numerical solution (described below), which gives S =

0.525 and ¢ = 1.575 (at k = 0.001). For developing flow (3.23) we numerically integrate (5.9)
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using Simpson’s rule, and find (for R,=2230 and x=1) Scz*™ = 0.1387 and ¢, = 1.094; again,
these agree well with the values from the numerical solution of the full problem, Scg*¥ = 0.1388
and ¢ = 1.093 (atk = 0.001). The existence of the long wave instability is also useful for the full
numerical solution, as it gives starting points from which the stability calculation may proceed.

The effect of variation of the half channel width and wall elastance on the long wave
stability boundary for developing flow is shown in figures 5.1 and 5.2, which show the long wave
critical flow speed Sc=~ and volumetric flow rate, b Scg™, as functions of the half channel width
and wall elastance. In both figures flow speeds and half channel width are scaled on (v / Xo )
and x,, respectively, to isolate the effect of changing b; by showing curves for increasing
Reynolds numbers R, (defined as 8 x," / v', where 8 = (E" X" / p*)'?), the effect of increasing
elastance is also seen. These figures show that the critical flow speed increases as channel width
is decreased, but that the critical volumetric flow rate decreases. Increasing the wall elastance
increases both the critical flow speed and flow rate, thus stabilizing the system significantly.

Note that the stability bounds derived above do not depend on the wall properties other
than the elastance; the effects of the mass ratio M, bending stiffness B, etc., appear in the stability
calculation only at higher orders in k. As a result, variation of these wall parameters may
stabilize the system only to the point at which the long wave instability is critical. Furthermore,
it is possible to find wall parameters such that the long wave and finite wavelength instabilities
become unstable at the same flow speed, resulting in a codimension two bifurcation point. This
is shown in figure 5.1 by also showing the critical flow speed for flutter (the finite wavelength
instability), Scg’» as a function of b; the codimension two point occurs when this curve intersects
that for the long wave instability. Variation of other system parameters changes Scg" in the

same manner as Sqf (c.f. §5.5).
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Figure 5.1: Critical flow speeds as functions of half channel width and elastance.
b* scaled on x,, S* on (V'/x,)XI0%. v, v: SV o, e
Scx'. Open symbols give R, = 2230, filled R, = 3000 (where R, =
(@x, /V)and 8 = (E %, /p ). Figure 5.1B shows the frequency
(scaled on (v' /%, 2) of the instability at onset. Other parameters as
figure 5.7 M = 3190), with modified scaling.

59




Critical
Volumetric
Flow

Rate

30

10

I

0 1 ] !
0 3 6 9 12

Half Channel Width b

Figure 5.2: Critical volumetric flow rate for long wave instability as a function
of half channel width and elastance. Scales and parameter values as in
figure 5.1. v R, =2230; v R, = 3000; O R,, = 5000.
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The above treatment was strictly for the case of symmetric disturbances. When
antisymmetric disturbances are considered the analysis proceeds in much the same manner, with
the midline boundary conditions replaced by the antisymmetric forms of (5.4). In this case the
leading order term of the wall condition (5.2) and the second midline condition are redundant,
so that the solution for the leading order antisymmetric eigenfunction and eigenvalue @, and Cxo

becomes a one parameter family of solutions,

_ (A + Dyy)

Q0 = Ay + Dypz?, and = 55 u, (z=-1), (5.12)
A0

(for nomalization we may specify one of A,, or D, when possible we take A,, = 1) provided
the free parameter D,, is non-zero. If D, is zero the second wall condition, (5.3), requires A,, =
0, and the solution for @,, is trivial. At O(k), condition (5.2) becomes a condition on D,,, and
requires it to be zero. Thus the only eigenfunction is the trivial one, and there is no long wave
antisymmetric instability. This is similar to the antisymmetric long wave limit for plug flow
(§4.3); in the long wave limit the fluid may be moved as a solid body across the midline,
resulting in a zero disturbance flow field.

It may be noted at this juncture that in the limit of long waves the assumption of locally
parallel flow made in the derivation of the Orr-Sommerfeld equation is violated. Thus in this
limit the developing flow result would be somewhat different if non-parallel effects were
included; possible differences are considered in the discussion of Chapter 7. Clearly this is
irrelevant for Poiseuille flow, and the similarity between the Poiseuille and developing flow
stability results suggests that the developing flow result is at least qualitatively accurate. Note
that if the wall boundary conditions (5.2, 5.3) are replaced by those for a rigid wall, @(z=-1) =

¢’(z=-1) = 0, the solution for either symmetric or antisymmetric disturbances is trivial, confirming
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that the long wave limit does not correspond to the Tollmien-Schlichting instability.

§5.3 Numerical solution method

Because the Orr-Sommerfeld equation is notoriously stiff, standard linear shooting
techniques that might otherwise be used to obtain a solution to the eigenvalue problem may fail,
especially for high Reynolds numbers flows. We therefore develop in this section a multiple
shooting algorithm with orthonormalization to solve (5.1) with boundary conditions (5.2-4)
numerically. This orthonormalization method is similar to that proposed by Davey (1973), with
modifications to allow for the more complicated boundary conditions introduced by the compliant
wall.

Linear shooting methods solve a boundary value problem as an initial value problem,
using superposition of solutions to satisfy the boundary conditions at the other end of the domain.
To accomplish this numerically, (5.1) is written as a first order matrix equation for the vector p =
(@ ¢’ 9" ¢”)7, as p’ = D p, where the entries of D are found in the usual manner from (5.1).
Boundary conditions (5.2) and (5.3) are written as vector conditions on p, B,rp=0and B,-p=
0, where the k™ components of B, and B, are the coefficients of the (k-1)* derivatives of ¢ in
(5.2) and (5.3), respectively. An ’initial condition’, py for p is chosen to satisfy the midline
boundary conditions (5.4) and integrated numerically, according to the vector form of (5.1), across
the channel to obtain p at the wall, py. (We use the variable step Runge-Kutta routine DIVPRK
from IMSL for the numerical integration.) Because the problem is linear, this integration may
be written as a matrix operation, as py = R py, where R is the ’transfer matrix’ for the problem.
Note that the jth column of R, r;, is found by integrating the jth basis vector ¢, (where e, =

(1 0 0 0)T, ezc.) across the interval. The boundary conditions (5.2) and (5.3), in vector form, then
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By 0 By 0 5.13
[B} Pw=(0)’ or (B:,.}Rpu=(0. (5.13)

Substituting r; for the jth columns of R and plugging in the symmetric initial condition py =

require

A, e, + A, e,, (5.13) becomes

B,-r, B,'r, || A (o ' (5.14)
B,'r, B,'r, || A, {0 )
For a non-trivial solution, then, the determinant condition

(B,-r,)(B,'r,) - (B;'r)(B,'r;) =0 (5.15)
must be satisfied. This condition determines the eigenvalue ¢, which is iterated from an initial
guess by a root finding algorithm until (5.15) holds. Clearly the same procedure may be applied
for the antisymmetric case, replacing the basis vectors used in the initial condition with e, and
€.

This procedure will work unless the vectors r, and r, in (5.15) are parallel or nearly
parallel, that is, unless the integration of e, and e, across the interval yields nearly the same
solution. To see how this may occur, consider the simple system ¢” - m* ¢ = 0 with m large.
The general solutions for ¢ are e™, and any initial condition will be a linear combination of
these. Thus as any general initial condition (that does not coincide exactly with the e™* solution)
is integrated through positive values of z it will rapidly become dominated by the growing
exponential, and solutions for differing initial conditions will thus soon become almost equal.
The Orr-Sommerfeld system similarly has exponentially growing and decaying solutions, so that

even though the initial conditions for the columns in the transfer matrix R are onhononnai, the
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columns themselves may still be almost parallel. Furthermore, even if the integration of the
different columns of the transfer matrix proceeds with high accuracy, the exponential growth will
result in the magnitude of the columns becoming very large, so that the numerical roundoff error
in the evaluation of the determinant may be significant. Systems exhibiting this type of behavior
are described as stiff, and it is to address stiffness that orthonormalization is introduced.

Orthonormalization modifies the transfer matrix to make it better conditioned while at the
same time maintaining the singularity of those columns that are used in the calculation of the
determinant. This is accomplished by normalizing all of the columns of the matrix and
orthonormalizing (using Gram-Schmidt orthonormalization) those two that appear in the
determinant. If the columns of the transfer matrix R are neither too nearly parallel nor too large
in magnitude it may be possible to obtain a solution by altering R in this manner. However, it
is frequently not possible to accurately orthonormalize the transfer matrix for the entire interval;
in these cases the interval of integration is divided into two or more smaller intervals. The
solution py, at the endpoint of the interval is then the product of the transfer matrices for each of
these intervals and the initial condition: for two subintervals, pw = R, R, py. As R, involves
integration over a shorter domain, its columns will not be so large in magnitude nor so nearly
parallel as those of the matrix R; it may thus be possible to orthonormalize R,, as indicated
above, to obtain a new matrix R,. This modified matrix is next multiplied by R,. This product
will also have non-orthonormal columns, but the resulting matrix will again be better conditioned
than the matrix R. It may thus be possible to orthonormalize the product R, R, and use the
resulting matrix to evaluate the required determinant. Clearly this procedure may be repeated
over as many subintervals as necessary to obtain accurate results.

Note that because ¢ and ¢ (and hence p) are complex valued, the R; will likewise be
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complex valued, and the dot product used in the orthonormalization must therefore be applicable
to complex numbers. Two possible choices are a-b = g bj" (where the dagger indicates
complex conjugate, and repeated indices indicate summation over the index) ora-b = a; b, We
use the second (complex valued) dot product, as it preserves the analyticity of the determinant
and allows the use of a Muller’s method to locate the eigenvalue (we use DZANLY from IMSL).
Some care must be taken, however, as this analytic dot product may be zero when the vectors
being multiplied are non-zero, but this never proved to be a problem.

Next suppose that there are more complicated boundary conditions at ihe channel midline;
this occurs, for example, when we test our code by considering flow over a compliant plate. In
this case it may not be possible to select an initial condition that corresponds to a linear
combination of basis vectors, as was the case above. It will of course still be possible to write
down two initial conditions, but they will in general be linear combinations of all four basis
vectors, so that if we continue as before and orthonormalize those columns of the transfer matrix
that contribute to the determinant, all four columns will be orthonormalized. However, while the
orthonormalization of two columns of the matrix leaves the singularity of the determinant
unchanged, this is not the case for three or more columns. To see this, consider the determinant

condition (5.15), in matrix form

B,-r, Br, (5.16)
Det[Bz-rz B,r, =0.

Normalizing the column vectors r; will clearly not alter the singularity of the determinant.
Orthogonalization of the second and fourth columns of the transfer matrix results in the
replacement of r, with r, - (r;- r) r, / (ry: ry); this is equivalent to adding a multiple of the first

column of the determinant matrix (5.16) to the second, which also leaves the singularity of the
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determinant unchanged. However, if three columns of the transfer matrix, say r,, r; and r,, are
orthogonalized, then r; and r, are transformed according to

r, = r,, =1, - [(ryr)r, [ (ry~1,)] and (5.17)
ry o r - [(rper)ry [ (ryer)] - (AN SVECRE WP
and orthogonalization results both in taking a linear combination of the two columns of the
determinant matrix and in the appearance in the determinant of factors of the third column of the
transfer matrix. As the factors of r, were not present in the original determinant, we may not
expect that the singularity of the modified determinant will be that of the original. This analysis
was simplified by the fact that we left the midline conditions in the form of basis vectors, but is
readily extended to the more general case. Thus in order to use the orthonormalization scheme
developed above we must be able to begin with initial conditions in the form of the basis vectors
€.
To accomplish this, a new variable ¢ = H p is introduced, where the matrix H is chosen
to transform the boundary conditions at one end of the interval to a simple form such as
¢ = ¢’ = 0. With the vector operators giving the boundary conditions at either end of the interval
written as B; and F;, the matrix H is thus defined so that F;- H'= (10007 and
F,» H' = (0 1 0 0)". This modified system is then solved as described above, bearing in mind
that the integration routine and boundary conditions B; must be modified to take into account the

transformation of the variable p by H.

§ 5.4 Comparison with known stability results
In geometries bounded by rigid plates we scale velocity on the flow speed of the base

flow profile, and lengths on the half channel width (for channels) or the displacement thickness




Comparison with previous stability results, TSI

Case

Present work

Previous result

Plane Poiseuille Flow

RCCR = 5772.2, kCR =

Recg = 57722, Keg =

1.021 1.021!
Developing Channel Recg = 9383, kg = 1.67 Recg = 9790 2
Flow, x=100
Recg = 8330, keg = 134 | Recg = 84202
x=170

67

Single Plate (Blasius)
Flow

Recg = 519.7, keg = 0.305

Recg = 520, keg = 0.301 2

Table V.i Comparison of critical Reynolds and wave numbers for TSI in flows
with rigid boundaries. ': Hughes, in Drazin & Reid 1981 % Gupta & Garg 1981
(from their figure 1) *: Jordinson 1970

(values of k. for the results of Gupta & Garg are difficult to obtain accurately
from their figures and so are omitted.)

of the boundary layer (for flow over a single plate). For flow over a single plate the channel

symmetry or antisymmetry conditions are replaced by the requirement that ¢ decay exponentially

outside the boundary layer. The appropriate decay rates to require at this point are found from

consideration of the Orr-Sommerfeld equation for large z, in which limit the equation has constant

coefficients; solutions are thus decaying exponentials, as found in the exact solution for plug flow,

with decay rates m, = k and m, = (K + i k (1 - ¢) Re)'? (where real(m,) > 0 to avoid growing

solutions). The boundary conditions requiring that the eigenfunction decay exponentially with

these decay rates are
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d d? 2 d d? 2
el - - = —_— —_— -k =0 (5.18)
(dz + k)(dzz m)e =0 and (dz + m,)( s )o

(Carpenter and Garrad 1985). As indicated above, these conditions require that the problem be

reformulated before the orthonormalization scheme may be applied.

Ranges of unstable wave numbers, unbounded flow,
single compliant plate

Reynolds Number present work, range of C&G, range of unstable
unstable wavenumbers wavenumbers

4000 0.050 - 0.130 0.051 - 0.131
0.142 - 0.344 0.146 - 0.343

4500 0.070 - 0.142 0.069 - 0.145
0.158 - 0.380 0.159 - 0.380

Table V.ii Comparison of Blasius flutter roots from present and past work,
scaled on maximum flow speed and boundary layer displacement thickness.
C&G = results of Carpenter and Garrad (1986, from their figure 13). E=0.5
Nmm™

In table V.I we compare with previous work the stability results we obtain for the TSI
for Poiseuille and developing channel flow, and for Blasius flow over a single plate, and in figure
5.3 compare the neutral stability curve we obtain for Blasius flow over a single rigid plate with
that of Jordinson (1970). The agreement is seen in all cases to be very good; the lack of exact
agreement with the developing channel flow results of Gupta and Garg (1981) is due to

differences in the representation of the developing flow profile; while we use a perturbation
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solution for the profile, they used a finite difference solution of the boundary layer equations.
The numerical solution of the Orr-Sommerfeld equation in a compliant channel may be
checked by considering a plug base flow and comparing with the exact solution obtained in
Chapter 4. The exact and numerical solutions for this case agree to the numerical precision used.
Finally we seek to duplicate the results of Carpenter and Garrad (1985, 1986) for Blasius
flow over a compliant plate. Their results are also obtained using a multiple shooting algorithm
with orthonormalization, with a polynomial approximation being used for the Blasius profile. In
figure 5.4 points on their neutral stability curve for the TSI (obtained from their figure 11) are
shown with the corresponding curve from our solution; in this figure we compare with their
choice of wall elastance E = 0.3 Nmm? (see Carpenter and Garrad 1985). We also compare in
table V.II ranges of unstable wave numbers for the travelling wave (Type B) flutter instability
(Carpenter and Garrad 1986). For either instability the agreement between the present work and

previous results is very good.

§5.5 Results

The flutter dispersion relation found numerically for developing flow is shown as a
function of the flow speed S in figure 5.5. As with the plug flow base state considered in
Chapter 4, there are roots travelling downstream and upstream for small S, which we call roots
1 and 2 respectively; root 1 is shown in figure 5.5. Root 2, as with the plug flow, slows and
reverses direction as S is increased, becoming unstable only after the appearance of instability for
root 1. The dispersion relation in 5.5 is for symmetric disturbances; that for antisymmetric
disturbances is qualitatively similar. Neutral stability curves for both symmetric and

antisymmetric disturbances are shown in figure 5.6, showing the symmetric mode to be the least
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Figure 5.6: Neutral stability curves, flutter instability. Solid curve, symmetric
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stable. The long wave limit is shown on the symmetric curve as a solid dot; as shown in §5.2,
there is no long wave instability for antisymmetric disturbances. We denote the absolute
minimum of the (symmetric) neutral stability curve as Sz and the corresponding value of the
wave number as k. The critical flow speed for the long’wave instability (solid dot) we identify
as Sc™¥, and the local minimum for k#0 (shown in 5.6 with an open dot) as Scg’, the critical
flow speed for flutter. In figure 5.6 Scg = Scif. Comparison of the developing flow neutral
stability curves in figure 5.6 with those for plug flow in figure 4.6 of Chapter 4 shows the
qualitative difference that the long wave instability present in the developing flow is absent in the
plug flow. The developing flow is also significantly less stable than the plug flow.

As was noted in §5.2, because the critical flow speed for the long wave instability
depends on wall characteristics such as the mass ratio M, etc., only at higher orders in k, it is
possible by varying system parameters to stabilize the finite wavelength instability and make the
long wave instability critical. This is shown in figure 5.7, in which neutral stability curves are
shown for a number of different mass ratios. Reduction of the mass ratio M (e.g. by reducing
the wall density) stabilizes the flutter instability (increases S¢y’ ), so that the instability moves
from non-zero to zero wave number as M is decreased. Once the long wave instability has
appeared, further variation in M does not alter the onset flow speed of the instability, as discussed
in §5.2 and below. This transition between the finite and long wavelength instabilities admits the
appearance of a co-dimension two bifurcation point, occurring when the long wave and flutter
instabilities have the same critical flow speed (Scg = Scg™ = Sci’)-

In figure 5.8A the effect of varying the wall damping G and mass ratio M on the system
is shown by plotting Scz"™ and S¢gf as functions of G for two values of M. As G is increased

or M decreased, the system is stabilized with respect to flutter (S¢gf increases), but the long wave
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Figure 5.7: Neutral stability curves for different mass ratios, showing long wave
and flutter instabilities. Solid dot gives long wave limit. © M = 500;
v M=100; v M=10;0 M=1. B =542, T = 0, Gx5000 = 0.0845,
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Figure 5.8: Critical flow speeds Scg™" and Sc" (5.8A) and frequency at Scg
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limit (Scg™™ ) is unchanged, so that for large wall damping stability is lost to the long wave
instability. The stabilization of the flutter instability is consistant with its being Type B, and
being stabilized by reduction of wall inertia. Note that 5.8A is qualitatively different than the
behavior of the plug base flow shown in figure 4.7A and discussed in §4.4, for which the effect
of increasing M could be stabilizing for large G because of the plug flow long wave stability.
Figure 5.8B shows the frequency of the oscillations appearing for developing flow at Scg. The
behavior of the frequency is similar to that seen for plug flow (figure 4.7B), decreasing with
increasing M or G, until the appearance of the long wave instability results in a discontinuous
drop to zero frequency.

Figure 5.9A shows Scg" versus wall elastance E (nondimensionalized on (p" v**/
b"?)x10*) for two values of the wall flexural rigidity B. For the parameter values considered,
Scr = Scx’- The frequency of the oscillations appearing at Scg is shown in figure 5.9B.
Stiffening the wall by increasing either E or B increases both Scg and the corresponding frequency
of oscillations; this is similar to the results for plug flow (figure 4.8) and is expected physically.
Note that the frequency in 5.9B, as that in 4.8B, increases approximately as E'?, consistent with
the results of Grotberg and Reiss (1984). The inset plots in 5.9 show the difference between the
values of Scgf for the two values of B (in 5.9A) and the corresponding difference in frequency
(in 5.9B), showing that the effect of B is larger for larger wall elastance, for which the instability
has shorter wavelength. This is as expected, and a similar effect may be obtained through
variation of the wall tension T. Note that the second wall stiffness parameter, d, is not
independent of B, varying only by a factor of 12 (b / h")%; we have retained it as a second
parameter only to facilitate comparison with the results obtained for the limit of no horizontal

wall motion (which corresponds to d* — 0). We find little difference between the cases d' =0
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Figure 5.9: Critical flow speed Scg (= Scr” ) (5.9A) and flutter frequency (5.9B)

as functions of wall elastance E. Elastance scaled on (p* v? /b™) x 10%,
velocity on (V" / b")x10?, frequency on (v' /b*2). o B =2.688 x 10,
e B =2.688 x 10°. Inset plots give the difference between Sy and fg
for the two values of B, as a function of E. Other parameters as figure
5.7 M = 3190), with modified scaling.
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and d' # 0.

Because the half-channel width b" also appears in the scaling of the problem, to examine
the effect of changing b™ we scale the system as noted in §5.2, scaling lengths on X, and
velocities on (V" / x, )x10%. Figure 5.10 shows the neutral stability curves for a number of
different half channel widths b; as b is increased, the effect of the second plate and hence of
viscosity in the channel is decreased, which stabilizes the Type B flutter. However, as indicated
in §5.2, the long wave instability continues to appear at lower flow speeds, so that for sufficiently
wide channels instability will be lost to the long wave instability. This is seen in figure 5.1,
which shows S™¥ and Sc;f as functions of b; we see that as b is increased past =9 the instability
goes from the flutter to the long wavelength instability. This is particularly interesting in light
of the experimental observations (Gavriely et.al. 1989) that flutter only occurs following tube
collapse; we hypothesize that this tube collapse is the physical manifestation of the long wave
instability and that flutter is then seen only when the channel width is reduced enough that it
may become critical. As the wall elastance (R,) is increased, the codimension two point moves
to larger channel widths. This is consistent with physical observations of flutter in stiffer tubes,
which do not collapse; the shift in the location of the codimension two point in this case is
evidently sufficient to ensure the appearance of the flutter instability. With increasing half-
channel width, the perturbation solution for the developing flow that we are using converges to
Blasius flow over a single compliant plate, and the stability results for the single plate system
(e.g. Carpenter and Garrad 1986) are recovered for the finite wave number instability. However,
for long waves the effect of the opposing channel wall is always significant, so that the single
plate limit is not reached; this is shown in figure 5.10 through the inclusion of a stability curve

for Blasius flow over a single compliant plate. We discuss the effect of increasing channel width
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Figure 5.10: Neutral stability curves for different channel widths, showing long
wave instability and comparison with Blasius flow over a single
compliant plate. Lengths scaled on x,, velocities on (V' / x, )x10%
O b=482; b=145; v b=24.1; v b= 724; dotted curve is for
Blasius flow over a single compliant plate. Other parameters as figure
5.7 M = 3190), with modified scaling.
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in slightly greater detail in §5.6. Figure 5.1A may also be compared with figure 4.9A of Chapter
4, which shows Sci* for plug flow as a function of half channel width. The behavior of the
critical flow speed is similar for either base flow, except for the long wave instability which is
absent for plug flow. Comban'ng 5.1B and 4.9B, the change in flutter frequency is also similar
for narrower channels; however, for wider channels, the effect of the long wave instability is seen
for the developing flow while the plug flow long wave stability increases the plug flow frequency
as discussed in §4.4.

Because increasing the Reynolds number of the flow is equivalent to decreasing the fluid
viscosity, such an increase stabilizes the flutter instability. However, in the case of the developing
profile, increasing the Reynolds number also changes the base flow profile, causing (for constant
flow speed S and axial position x,) a narrowing of the boundary layer at the wall. A similar
effect may be obtained by decreasing X, ; this destabilizes the flutter instability. It is difficult to
draw conclusions for wide ranges of axial positions, however, due to limitations imposed by the
downstream limit of validity for our developing profile. Further, as points farther upstream are
considered, non-parallelism in the flow may become significant; we return to this issue in the
discussion in Chapter 7.

As noted in Chapter 4, the effects that we find destabilize the flutter instability correspond
with the distinguishing characteristics of the lung airways of wheezing patients. For developing
flow, however, there is also the long wave instability, which we expect is related to tube collapse,
and hence flow limitation. As wide channels are more susceptible to the long wave instability
than to flutter, this agrees with clinical observations that forced expiratory wheezes are only seen
following flow limitation (Gavriely et.al. 1987). In Chapter 6 we compare the theoretical results

from the developing flow model with experimental results.
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§5.6 Discussion of the limit of infinite channel width

To consider results for very wide channels, it is convenient to investigate the effect of
increasing channel width on the flutter dispersion relation shown in figure 5.5. In this figure the
eigenvalue c is seen to change smoothly with increasing flow speed; however, as the half channel
width b is increased, there appears near the point at which the base flow speed becomes equal to
the phase speed of the disturbance an abrupt drop in the phase speed and upward bend in the
growth rate of the disturbance. As b is increased still further, this becomes an actual
discontinuity; this is shown in figure 5.11A. To illustrate this more clearly, figure 5.11B shows
the eigenvalue in the complex ¢ plane; in this form, imag(c) is given as a function of real(c), with
flow speed S parameterizing the curves (only the region of parameter space about S = real(c) is
shown). The dependence of this behavior on the condition S = real(c) is emphasized by scaling
¢ on the maximum flow speed of the base flow, so that the line S = real(c) lies along real(c) =
1. Similar behavior may be obtained by varying other system parameters; this occurs when the
effective channel width is very large (e.g. the mass ratio M goes as (b”) ', so that decreasing M
may be interpreted as increasing the channel width, subject to variation of other parameter
values).

To understand this behavior, it useful to consider more specifically the characteristics of
the Orr-Sommerfeld system in bounded and unbounded domains. In an unbounded domain,
unlike the finite case, there are only a finite number of eigenvalues in the discrete spectrum
(Miklav&i& 1983), and these are supplemented by a continuous spectrum consisting of "improper’
eigenvalues having phase speeds equal to the maximum flow speed of the base profile and

negative growth rates (Grosch and Salwan 1978; Craik 1991). As the Reynolds number of the
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Figure 5.11: Dispersion relation for developing flow in a very wide channel,
showing singularity at S = real(c). Dotted line gives S = real(c).
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flow is increased, eigenvalues are added to the discrete spectrum, appearing sequentially at the
line in the complex ¢ plane giving the continuous spectrum (Mack 1976). For Blasius flow over
a rigid plate, the only eigenvalues in the vicinity of the continuous spectrum are significantly
damped, but this is not the case when a flexible wall is considered. In this case the Type B
flutter mode (which is our root 1) may be critical, and may have a phase speed that approaches
the speed of the base flow. The presence of the continuous spectrum then complicates matters,
as it is difficult to accurately locate eigenvalues near the continuous spectrum (Carpenter and
Garrad 1986). In a finite domain there is no continuous spectrum (Lin 1961), and this difficulty
does not arise, but as the finite domain is modified to look more like the infinite case (when the
channel width is increased, or other parameters varied to obtain a similar result) it may be
expected that the numerical solution to the problem might encounter difficulties as the phase
speed of the disturbance becomes similar to the flow speed of the base flow, as seen in figure

5.11.




CHAPTER 6: COMPARISONS WITH EXPERIMENTS

§6.1 Overview

As the motivation for this study is to model the oscillatory instabilities in the lung airways
that lead to wheezing lung sounds, we would like to compare our theoretical predictions with
actual experimental observations of such wheezing. However, the characteristics of the lung
airways that we need to obtain the parameters in our model (M, B, ezc.) are not known with any
accuracy, making such comparison difficult. We therefore first consider the theoretical modelling
of experiments with flexible tubes, in §6.2 - §6.4, and return to the issue of the lung in §6.5. In
that Gavriely et.al. (1987, 1989) have demonstrated that the characteristics of both the collapse
phenomenon and the sounds produced in such tubes are similar to those in the lung, this
comparison may itself indicate that our model is applicable to the lung and shed insight on the

lung experiments.

§6.2 Comparison with flutter in tube experiments

Gavriely et.al. (1989) experimentally investigated air-conducting flexible tubes, and found
an oscillatory instability that followed tube collapse. Based on the characteristics they give for
their tubes and flow (h'=0.19cm, b'=0.07cm (after collapse, at the onset of flutter),
pw =0.941g/cm?®, p'=8x10*g/em?, v'=0.225cm’/s, T'=0, G'=1.72s", E'=5.86x10° dyne/cm’, and
D'=Y"h™/9 (where Y'=the Young’s modulus)=7621dyne cm), we find the following non-
dimensional parameter values for our model: M = 3190, B = 542, T = 0, G = 0.0542, d = 882,
and R,, = 2230. For the experimental case for which these parameter values were derived, the

critical flow speed at which the oscillatory instability was first observed was 2670cm/s; this value
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was obtained by averaging the flow rate over the cross-sectional area of the tube. The symmetric
instability appearing at this flow speed had a frequency of 300Hz.

To obtain resuits using our developing flow model, it is necessary not only to use the
parameter values indicated ﬁbove, but also to select an axial position at which to evaluate the
developing flow profile. In the experiments a long (60cm) flexible tube was fastened at either
end to a rigid pipe, and air flow through the tube was induced by a suction pump at the
downstream end. As the driving pressure gradient was increased, collapse and flutter occurred
at the downstream end of the tube. The development length for a tube is
Xper = 0.25 I 2 Upyg / V" (where 1 is the tube radius and u,yg the average fluid velocity)
(Schlichting 1955); for the experiment the uncollapsed tube radius r” = 0.325cm, v" =0.225cm?/s,
and u,ye = 1600cm/s, so that xgr = 188cm. Thus it is clearly appropriate to consider the flow
in the collapsed tube section to be developing. However, the precise appearance of the profile
is unclear, as when the flow enters the collapsed section it regains a more pronounced boundary
layer character due to the constriction. We therefore calculate the stability of the system at
several axial locations, and also compare with the results for fully developed flow; an additional
comparison is then made with the predictions of the plug flow solution.

The predicted flutter frequencies for a developing flow at axial positions x = 1, 2 and 3
half channel widths (recall that it is necessary that we consider x, small for the for the developing
profile to be valid; this requirement is slightly less stringent than x, < 3) are 312Hz, 311Hz, and
310Hz; for Poiseuille flow, 308Hz; and for plug flow, 333Hz. The numerical predictions for the
viscous (developing or Poiseuille) profiles are thus all quite close to the experimental value, while
the plug flow result is higher. That is should be larger than the numerical values is, however,

reasonable from the trend, seen in the frequencies for the developing flow, of increasing
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frequency with decreasing axial position.

The critical flow speeds Scg' corresponding to the frequencies above are for the
developing flow 344cm/s, 417cm/s and 463cm/s (at X, = 1, 2, and 3); for Poiseuille flow,
540cm/s; and for plug flow, 1,488cm/s. It is not appropriate to directly compare the theoretical
and experimental flow speeds, however, as the value measured experimentally (2670cm/s) is an
average over a collapsed tube cross-section. As this cross-section is a dumbbell-like shape, the
velocity in the central (channel) section of the collapsed tube (where the oscillations appear) will
be lower than that in the outer lobes because of viscous resistance.

To estimate the degree to which the channel flow speed might differ from the
experimentally measured cross-sectional average, we use the finite elements package FIDAP tb
calculate the velocity profile in a collapsed tube cross-section. This requires, however, knowledge
of the dimensions of the collapsed tube section, which are not reported by Gavriely et.al (1989);
dimensions that are given are the half-channel width (0.07cm) and cross-sectional area (0.2cm?).
Flaherty et.al. (1972) numerically obtained shapes for collapsed tubes, to which the experimental
dimensions might be matched, but their model is for a tube with walls of negligible width while
in the experiments the width of the tube wall (0.19cm) was a substantial percentage of the
uncollapsed radius (0.325cm). We therefore consider two approximate collapsed tube shapes
based on the dimensions that are given and the results of Flaherty ez.al.; the two differ in that the
second is flatter, with smaller side lobes and a longer channel section. By considering the two,
we obtain a qualitative estimate of how the tube shape may influence the flow speeds in the cross-
section. As the imprecision in estimating the tube shape and dimensions itself prevents the
velocity calculation from being quantitative, only fully developed flow is considered, as this

results in an order of magnitude decrease in the required computational resources from those
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necessary for the calculation of developing flow. Details of the FIDAP calculation appear in
Appendix B. For the flow rate of the experiment (533cm?/s), the average velocity in the channel
section of the two shapes is found to be 1440cm/s and 1010cm/s, respectively. These calculations
thus indicate that the velocity at the center of the collapsed tube section may be significantly
lower than the cross-sectionally averaged value determined in the experiments, and thus that the
actual channel flow speed in the experiments was likely to have been closer to our theoretical
predictions.

An additional complication in this comparison arises from the geometry of the collapse
itself, which results in both a constriction (in the transverse dimension of the channel) and
expansion (out of the channel, into the side lobes of the dumbbell) of the tube. The TSI is
stabilized for flow into a constriction (White 1974), but the effect of a lateral expansion (and the
resulting three dimensionality of the flow) has not to our knowledge been investigated even for
the TSI (let alone flutter). Neither of these effects are included in our model, and they may,
along with the variation in flow speeds investigated above, reconcile the difference between the

theoretical and experimental critical flow speeds.

§6.3 Comparison with collapse in tube experiments

Next, we seek to compare the experimentally observed flow speed at which tube collapse
began with the long wave onset flow speed we find theoretically. It is difficult to determine the
experimental value from Gavriely et.al. (1989), as they did not report the critical flow speeds for
tube collapse. However, we estimate the beginning of collapse to be when the pressure - flow-
rate relationship they show first deviates from the slow linear increase seen before collapse and

flow limitation. From their figure 3.B, this gives a critical flow rate of approximately 27 /min,
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or an average flow speed Sc™* (recalling that the uncollapsed tube radius was 0.325cm) of
1340cm/s. Reading from our figure 5.1, we find for this channel width that the long wave
instability is critical, with Scg"V of about 680cm/s, or roughly half of the estimate from the
experiments. Thus the developing flow model accurately predicts the existence of the long wave
(collapse) instability. In that the comparison between the theoretical and experimental critical
flow rates is at best qualitative, due to the nature of our experimental estimate and the fact that
before collapse it may be less appropriate to model the tube as a channel, we conclude that there

is evidence to support our hypothesis that tube collapse is related to the long wave instability.

§6.4 The TSI in the tube experiments

Two observations verify that the flutter instability investigated above is that which is
relevant to the tube experiments. First, the experimentally observed instability is symmetric,
while the TSI is antisymmetric, and second, we also numerically calculate the critical flow speed
for the TSI to demonstrate that it occurs for much higher flow speeds. This critical Reynolds
number (scaled on maximum flow velocity and half channel width) is Reqg = 5761, which is
equivalent to an average flow speed of approximately 18,500cm/s, which is far in excess of both
the experimentally measured and theoretically predicted critical flow speeds for flutter. The
frequency of the oscillation for the instability is 11,360Hz at criticality, which is again several
orders of magnitude larger than the experimental or theoretical values. These calculations are for
Poiseuille flow; the critical Reynolds numbers for the TSI in developing flows are much higher

(Chen and Sparrow 1967).
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§6.5 Comparison with wheezing in the lung

We now tumn to the issue of modelling wheezing in the lung. For this comparison we
consider experiments with forced expiratory wheezes (Gavriely et.al. 1987) for which wheeze
frequencies and flow rates were reported. The subjects in this study executed forced expiratory
maneuvers to produce wheezing sounds; a controlled suction pump was used to facilitate the
production of the wheezes, which had frequencies of 580-2730Hz. The volume flow rate of the
expirations was on the order of 1 1/s. Wheezes were measured with a tracheal microphone, but
the actual location of the wheezes in the lung is not indicated. Kramen (1983) also investigated
forced expiratory wheezes, though without mechanical forcing, and found them to occur between
the trachea and lobar bronchi. The frequencies of the wheezes reported by Kramen are similar
to those of Gavriely et.al., as are those in the limited forced expiratory experiment of Hinchey
and Snellen (1987).

To apply our theoretical models to these experiments, we need estimates for the physical
characteristics of the airways in question. Dragon and Grotberg (1991) suggest for the trachea
r=0.9cm (uncollapsed radius), h'=0.05cm, py'=0.997g/cm®, G'=5s", and E* up to 2.8x10’
dyne/cm?, with v'=0.15cm?s and p"=0.00114g/cm®. For the bronchi, we expect the elastance E*
to be lower, and the radii r’ to be smaller; Olson et.al. (1970) give r'=0.65cm, 0.47cm and 0.36cm
for the first three generations of bronchi. To estimate a Youngs modulus Y" for the trachea, and
collapsed ’channel-width’ for the airways, we assume that the ratios Y'/E" (=200) and b’/r
(=0.215) for tube experiments (Gavriely et.al. 1989) may be applied to the lung. We find E” and
Y" for the bronchi by decreasing the corresponding values for the trachea by a factor of 5 for each
airway generation. Values of h” for the bronchi are found by letting the ratio of h” to r; be the

same as for the trachea. Finally, we take for the trachea E'=1x10°dyne/cm?®. Our estimates for




parameter Trachea 1° Bronchi 2° Bronchi 3° Bronchi
r 0.90cm 0.65cm 0.47cm 0.36cm
b 0.19cm 0.14cm 0.10cm 0.077cm
b 0.05cm 0.04cm 0.03cm 0.02cm
O pw 0.997g/cm® 0.9g/cm® 0.9g/cm® 0.9g/cm®
@ G 5s! 55! 5s! 5st
E’ (dyne/cm?) 1x10° 2x10° 4x10* 8x10°
Y® (dyne/cm?) 2x10° 4x10 8x10° 1.6x10°
a 29,620cm/s 13,250cm/s 5.923cm/s 2,649cm/s
M 230 226 237 205
B 2.13 3.70 6.00 5.06
@3 T 0 0 0 0
G 7.38x10° 0.0119 0.0200 0.0298
d 369 544 800 899
R, 37,515 12,362 3,950 1,360

Table VLi: Dimensional and non-dimensional parameters for lung airways. (1):

density of the bronchi is assumed to be somewhat less than that of the trachea,

but of similar magnitude. (2): wall damping is arbitrarily taken to be constant

for all airway generations. (3): we initially assume zero longitudinal wall tension

for all airways.
the airway characteristics and the corresponding dimensional and non-dimensional parameters
used in our models are summarized in table VLi.

In table VLii we present results from the developing and plug flow models of Chapters
4 and 5 for the parameter values indicated in table VLi. Because of the crude nature of some of

the estimates leading to those parameter values, we also show results for some other values. The

values for the flutter frequencies in the table may be compared with the experimental values (580-
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parameter set: | Trachea 1° Bronchi 2° Bronchi 3° Bronchi |
fer 1646Hz 1011Hz 619Hz 386Hz
Devel.
Flow  Sc 2308cm/s 1183cm/s 593cm/s 304cm/s
=2
%=2) Sc™ 2395cm/s 1634cm/s 878cm/s 530cm/s
Plug for 1808Hz 1117Hz 687Hz 434Hz
Flow
Sca’ 9544cm/s 4350cm/s 1934cm/s 845cm/s
parameter set: | 2° Bronchi' 2° Bronchi? 2° Bronchi' 2° Bronchi*
for 672Hz 896Hz 508Hz 621Hz
Devel.
Flow Sk’ 399cm/s 568cm/s 547cm/s 420cm/s
=2
=2) Selt 878cm/s 878cm/s 609cm/s 609cm/s
Plug for 765Hz 1116Hz 607Hz 763Hz
Flow
S.F* 1236cm/s 2005cm/s 2204cm/s 1517cm/s

Table VLii: Theoretically predicted flutter frequencies and critical flow rates for
the parameters indicated in table VLi. f,}: parameter values as 2° Bronchi, table

VLi, with 1 G'=1s% % G=ls', T=10; 11 E'=2.041x10° T=10;

t}: E'=2.041x10%, T=10.
2730Hz), and are seen to agree quite well. As noted in §6.2, it is difficult to compare our
theoretically predicted critical flow speeds with experimental values, and this difficulty is even
greater for the lung experiments, for which even the collapsed tube cross-sectional area is not
known. It is worth noting, however, that flutter (rather than the long wave collapse) is predicted
for the developing flow, consistent with our modelling already collapsed airways. If we assume
that the ratio of collapsed to uncollapsed tube cross-sectional area (Aco, / Rr” 2 is similar for the
lung airways and tube experiments (of Gavriely et.al. 1989), we have Ao =1.53cm? for the

trachea, and =0.80cm?, 0.42cm? and 0.41cm? for the first three generations of bronchi. Fora1 /s
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expiratory flow rate, then, the average flow speed through a collapsed trachea would be 653cm/s;
through the bronchi (noting that there are 2, 4, and 7 bronchi in the first 3 generations of bronchi
(Olson et.al. 1970)), 625cm/s, 595c¢m/s and 348cm/s, respectively. Based on the comparison with
flutter in tube experiments (§6.2) and the imprecision in these estimates, we expect the
theoretically predicted flow speeds for the developing flow to be on the order of or somewhat
lower than these values, which we seen in Table V.ii to be the case. It is thus reasonable that the

experimentally observed wheezing sounds were in fact the result of flutter in the lung airways.




CHAPTER 7: CONCLUSIONS AND DISCUSSION

§7.1 Summary

Motivated by the fluid dynamic flutter instability seen in flexible tubes and wheezing lung
sounds, we have investigated the linear stability of a compliant channel conveying a developing
flow. This flow profile was approximated by a plug flow, for which analytical solutions are
possible, and with a perturbation solution (valid in the upstream region of the channel), based on
the Blasius profile, for which we obtained analytical long wave results and numerical results for
arbitrary wavelengths.

The study of the perturbation solution showed the existence of both a finite wavelength
(flutter) and long wave (collapse) instability, which may appear independently or simultaneously,
the latter case resulting in a codimension two bifurcation point from the base flow. The long
wave instability is not present for our plug flow solution , as it requires a non-uniform base flow
profile; for this reason it has not been seen in previous channel studies. We expect that the long
wave instability corresponds to the tube collapse seen prior to oscillatory instabilities in tube
experiments, and hence to flow limitation in tubes and the lung.

We have examined the effect of varying different parameters on the stability of the system
and found, in particular, that effects destabilizing the flutter instability are those which would be
expected to characterize the lungs of individuals who are more prone to wheezing, thus providing
further corroboration for the theory that wheezing is symptomatic of airway flutter. Further, the
long wave (collapse) instability is more likely to occur in wider channels, and is hence likely to
appear before the flutter instability, as seen in experiments.

We thus conclude, in light of the good agreement between theoretically predicted and

94
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experimentally observed flutter frequencies seen in Chapter 6, that we have further theoretical
support for the causal relationship between airway flutter and wheezing lung sounds. We have
also found qualitative support for collapse and flow limitation being the manifestation of a long-
wave wall-fluid instability. In the remainder of this chapter we discuss some issues related to this
work. In §7.2, we discuss the Tollmien-Schlichting (viscous fluid) instability, and in §7.3 the
issue of nonparallelism in the base flow is considered. We conclude in §7.4 with a brief outline

of some possible extensions of the present work.

§7.2 Discussion of the Tollmien Schlichting instability

It is clear from the investigation in §6.2 of the TSI in the context of the tube experiments
of Gavriely et.al. (1989) that the TSI is not likely to appear for the thick walled, air-conveying
tubes with which we are concerned for the present study. However, in other systems, e.g. when
the ratio of wall and fluid densities are similar (so that the mass ratio is closer to unity), or the
wall elastance is higher, the TSI may be significant. While this is not the case in the lung
airways, it is for many engineering applications and for physiological applications such as blood
flow. In the latter, however, the flows are likely to be fully developed, and in arterial flows
significantly pulsatile. As noted in Chapter 2, the effect of compliant boundaries on the TSI for
plane Poiseuille flow has been considered by Hains and Price (1962) and others, and nonlinear
stability calculations have been done by Rotenberry and Saffman (1990) and Rotenberry (1992).
However, the stability of pulsatile flows with compliant boundaries has to date not been

considered.




96

§7.3 The effect of nonparallelism in the base flow
The derivation.of the Orr-Sommerfeld equation, as indicated in Chapter 3, requires that
the base profile considered be parallel, that is, a function only of the transverse coordinate. When
we approximate the developing profile with a plug flow the nonparallelism in the base flow is
moot, but this is not the case when a true developing profile such as our perturbation solution is
considered. In this case we assume that the flow is locally parallel, so that transverse changes
in the flow are small and may be neglected. This requires that we choose the axial position x,
at which the profile is evaiuated so that the change of the boundary layer thickness over a
disturbance wavelength is small by comparison to the channel width. More precisely, it should
be the case that &(x, + Ax)- &%) << 1, where &Xx,) is the boundary layer width
(nondimensionalized on half channel width) a nondimensional distance x, downstream from the
mouth of the channel and Ax = 2r/k is the nondimensional disturbance wavelength. Similarity
analysis of the boundary layer equations gives &(xo) =5 (V' X, /0 b™®)'? (see, for example,
Schlichting 1955); with this the condition for slow variation of &(x,) reduces in a straightforward

manner to

2n
kR,S

<< L+ 10 Zyny. 1.1
25 RS

The requirement for the developing flow profile itself to be valid, i.e. that the axial position being
considered be downstream of the leading edge of the channel wall, is x, >> (R,, S)” (Batchelor
1967), which is in general less stringent than (7.1). For the developing flow profile that we use,
the axial position x, considered must also satisfy the requirement x, < 0.02 R, S (cf. §3.3). We
are not guaranteed in advance, however, that on satisfying this condition (7.1) will also be

satisfied, and in the long wave limit (k—0) it will be impossible to satisfy (7.1). We therefore
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consider here the effect of nonparallelism on the stability calculation. For the TSI non-parallel
effects have been shown to be destabilizing for Blasius flow over a single wall (Gaster 1974,
Saric and Nayfeh 1975, and others), and for developing flow in a channel (Garg and Gupta 1981).
However, the introduction of non-parallelism also results in great sensitivity to the quantity used
to measure instability (e.g. growth in axial or transverse velocity, kinetic energy, etc.), so that it
is difficult to quantify the degree to which this is the case, and the magnitude of the effect may
be less than was previously thought (Fasel and Konzelmann 1990). Further, as all of the previous
studies have considered only the TSI, it remains to be shown how non-parallelism influences the
channel wall-fluid instabilities. However, the previous studies suggest that the variation of the
stability boundary due to the degree on non-parallelism present in the systems we consider may
be fairly small, and a detailed numerical study for Blasius flow demonstrated that parallel flow
results provide a good leading order approximation for the desired stability results (Fasel and
Konzelmann 1990). We have therefore chosen not to undertake an analysis of the nonparallel

problem here.

§7.5 Directions for future work

There are several extensions to the present work suggested by the discussions above and
in Chapter 6. The influence of nonparallelism in both the base flow and collapsed tube geometry
on the comparison between the theoretical and experimental results was seen in §6.2. It would
thus be useful to include the effects of nonparallelism in the stability analysis of the channel flow
that we considered. By including these effects in a multi-scale analysis (as Saric and Nayfeh
1975, for example), the present work would serve as the leading order result in a perturbative

solution in small parameters measuring the degree of contraction of the tube and the
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nonparallelism in the flow.

A more complete analysis of the developing flow field going into the collapsed tube
section, by extending our FIDAP analysis, for example, would similarly clarify comparisons
between theory and experiments. Such an investigation would show not only the nature of the
actual flow profile in the collapsed channel section, but also the degree to which three
dimensionality might enter into the flow.

The present stability code could readily be applied to investigate the stability of other
physiological flows, such as blood flow. As noted above, however, arterial flows are significantly
pulsatile, suggesting that the addition of an oscillatory component to the flow field would be
physically relevant. For a small amplitude oscillatory component this could be incorporated as
a perturbation to the present work.

Finally, we have considered only linear stability theory. To investigate the actual
evolution of the instability a nonlinear analysis is required. This might be approached using a
weakly nonlinear theory similar to the investigations of Grotberg and Reiss (1984, 1985), or could
alternatively us a strongly nonlinear long wave analysis (Atherton and Homsy 1976). In the
applications investigated in Chapter 6 even the flutter instability was found for fairly long
wavelengths (k=0.1), suggesting that a nonlinear long wave analysis may be useful in determining

the nature of the transition between the long-wave and flutter instabilities.
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APPENDIX A: FINITE DIFFERENCE SOLUTION FOR
DEVELOPING CHANNEL FLOW

§A.1 Problem formulation and uniform grid difference scheme

In this appendix we formulate a finite difference solution for the flow in a rigid channel
that develops from an initially uniform profile. In the boundary layer at the walls of the channel
the flow is govemed by Prandtl’s boundary layer equations. We assume that the simplification
involved in the derivation of these equations, namely the assumption that axial diffusion is
negligible, may be applied throughout the channel and thus that they may be solved to obtain a
complete description of the flow. This reduction is significant, as it reduces the elliptic Navier-
Stokes equations to a parabolic form. We may then solve the boundary layer equations with a
finite difference formulation, treating the axial coordinate as a time like variable and marching
downstream from the initial condition at the channel mouth.

The boundary layer equations are, scaled on the initial (uniform) flow speed S" and half

channel width b’,

- % 1 -
R D and u, +v, =0, (A.T1)

where y is the transverse coordinate (y=0 at the wall and y=1 at the midline), Re = S" b"/ V', and
u and v are the axial and transverse velocities, respectively. In an unbounded domain the value
of dp/dx is given by the inviscid solution for the outer region of the flow; in the case of a
channel, however, the central (inviscid) core is accelerated as a consequence of conservation of
mass. Thus the fluid pressure, as well as the fluid velocities, must be found. To accomplish this,

we impose a constraint requiring that the flow rate in the channel be constant, namely
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1
f udy=1. (A2)
0

The boundary conditions on-the flow are no slip at the wall and a symmetry condition at the
midline: u=v=0 at the wall, du/dy=v=0 at the midline.

To solve (A.1) and (A.2) subject to the given boundary conditions, we introduce a grid
with axial and transverse indices n and j, respectively, where 1 Sn < ntotand 1 <j < jot. n=1
corresponds to the channel mouth, j=1 the channel wall and j=jtot the channel midline. We
replace y derivatives in the momentum equation ((A.1), first equation) with the second order
accurate central difference formulas

a ns+l 1 nsl A+l
u’ o= (- uy) + 0(8y?)
Ty ! 2Ay il i-1 (A3)

az n+ 1 R+ A+ A+
a_yzu" ' s A_y(u,.,,‘ - 2ut ) + 0(8yY).

In (A.3) and equations that follow we denote the value of variables at the (n,j)th grid point with
a superscripted n and subscripted j; Ay and Ax indicate the grid spacing in the transverse or axial
directions, respectively. For the x derivatives in the momentum equation we use a second order

upwind difference formula,

a sll;l - ._l_(zs"‘l
2

~ = - 25" + %s"") + O(Ax*), s=u or p. (Ad)

Finally, to maintain linearity in the momentum equation we introduce second order accurate

approximations for the nonlinear factors of u and v in the inertial terms of (A.1),

g a2 s s u or v, (A3)

The continuity equation ((A.1), second equation) is evaluated at the j+'/,th transverse grid
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point, so that the second order accurate central difference approximation for the y derivative of
v is
9 yret o 1 ymet _ymly L oay?). (A6)
g By
The x derivative of u in (A.1b) is evaluated using the upwind difference formula (A.4), with the
values of u at the j+!/;th grid point being expressed as the average of the values at the jth and
j+1st points, so that

a n+l 1 3 ne+l n+l A r
‘ =[m<;<u,~.l Ty - 20l ) -

Ox i*g (A7)

%(uf.;‘ + u,““)] + O(AP,8y").

The integral flux condition is evaluated using a fourth order accurate open integration

formula,

1
109 n+l 5 n+l 63 ns+l 49 A+l
nsl = A —_ - —_— i
{“ @ =bylggie —ggh gl gl t
n+l n+l 49 na+l 63 nel (A.8)

6 t 7t Uy.s + Zgujxad + zg itex -3

5 n+l 109 n+l 1
—l; —_U; o .
a8 "jtoe-2 + 43 ﬂa-l) + (jt0t4)

Using (A.3), (A4), and (A.5) in the momentum equation, (A.6) and (A.7) in the

continuity equation, and (A.8) in the integral flux condition (A.2), we obtain the difference system
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Ax Ax

(-2 - Re_(2v - v 1uy + (4= + 3Re(2u)” -
A o A9
Wl . (- 2:‘1 + Re_(2v -V ™H1uly + 3Rep™! (A9)
Ay?
= Re(4p" - p*Y) + Re(zu,. -u' Yy (4u® - WY,
with continuity,
( nd _ ful) - _[( nd + nol) _
(A.10)
2( .,+u>+_( S ]
and the integral flux condition
Jloe -1
Y au' = jiot, (A.11)

Jj=2
where the a are given in (A.8). To evaluate the no flux condition at the midline, we note that
from the central difference formula (A.3) the condition duy, /dy=0 is equivalent to requiring
Ujxs1=Ujr- Thus to implement the no flux condition we apply the momentum equation (A.9) for
the midline grid point and use the given relationship between u,,, and u,,, to eliminate the
value of u;,,;.

Equations (A.9) and (A.10) with boundary conditions u,"=0, the no flux condition, and
initial conditions u;'=1, p=p, form a problem for u**' and p™! of the form M, q, = R,, where the
matrix M, is tridiagonal and doubly bordered, and the vectors q; and R; are given by
q; = @™ =™ p™)T and R, = the right hand sides of (A.9) and (A.10). This may be
solved for u and p at the n+1st axial grid point, after which (A.11) with boundary condition
v,""'=0 and initial condition v;'=0 may be easily solved for v;**'. The problem for v/ is of the

same form as that for u and p, M, q; = R,, but in this case the matrix M, is constant for all axial
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positions in the channel, so that the matrix inversion need be done only once at the beginning of
the calculation.

For the calculation of the velocity and pressure at the first point downstream of the
channel inlet we do not have available the two levels of data for u and p required by the upwind
difference formula (A.4), and SO use a first order difference approximation for this step only,

a srul - 1
ox Ax

(s"*!' - s") + O(Ax), s =u, or p. (A.12)
§A.2 Modifications for a non-uniform grid

The fundamental difficulty in attempting to solve the system outlined in §A.1 lies in
resolving the transition between the initial condition that fails to satisfy the no slip condition at
the wall and the flow in the remainder of the channel, for which we require the condition be
satisfied. To obtain an accurate description of the flow we must thus have a large number of grid
points in the region over which this transition is effected, namely, the boundary layer near the
wall. We do not, however, need such a concentration of points in the middle of the channel,
where the flow is changing only slightly. This is accomplished through the introduction of a non-
uniform transverse grid to concentrate points near the wall. To do this, we introduce a new
variable Y=g(y), where g(y) is defined so that when the problem is solved on a uniform set of
points Y; the corresponding points yj=g'1(Yj) have the desired spacing. We use the transformation
g(y) =Py + (1 - P)(1 - tanh(Q(1-y))/tanh(Q)) (Fletcher 1991); P and Q are free parameters chosen
to alter the degree of non-uniformity.

The introduction of this new variable changes the boundary layer equations (A.1) and

integral condition (A.2) through the replacement of d/dy and 9%dy* with (dY/dy)(@/dY) and




110

[(d2Y/dy®)(@/dY) + (dY/dy)*(3*/0Y?)], respectively. This change does not alter the difference
formulas used, however, as it involves only the addition of known coefficients; solution of the

problem then proceeds as indicated in §A.1.

§A.3 Results

To obtain meaningful results with the finite difference code the axial step size Ax must
be chosen to avoid instability; if the step size is too small the system becomes unstable as the
flow progresses downstream. At the same time, a small step is required near the channel inlet
to resolve the transition from a plug to a viscous profile. Thus the first few steps are taken with
a small value of Ax, and thereafter a larger step size is used.

To test that the results produced by the code are accurate, a Poiseuille profile is
introduced as an initial condition. This profile remains parabolic at arbitrary positions
downstream, with a the pressure drop that is linear in the axial coordinate, as it should be.

The developing flow pressure drop and axial velocity at various positions downstream of
the inlet are shown for a plug initial condition in figure A.1. Some jaggedness is seen for small
x in the plot for pressure; this is a result of the discontinuous change from a slip to a no slip
profile at the inlet. The difference between the pressure drop for the plug initial condition and
that for a Poiseuille flow is a useful measure by which to compare with the results of other
investigations. We find this difference to be q=0.341 (in non-dimensional pressure units); this
is consistent with other solutions of the problem. (For comparison, Schlichting (1934) finds

q=0.313; Bodoia and Osterle (1961) have g=0.338; and Brandt and Gillis (1966) give g=0.331.)
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Figure A.1: Finite difference solution for developing channel flow. A.1A:

Pressure as a function of axial coordinate x.

Solid curve gives

developing flow result; dashed, Poiseuille flow. A.1B: Developing flow
profiles at axial positions x=0.05, 0.35, 0.88, 2.8, 5.7, 10, and 30. Curve

for x=30 is Poiseuille flow.
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APPENDIX B: FIDAP SOLUTION FOR FLOW IN A COLLAPSED TUBE

§B.1 Solution procedure

To use FIDAP, it is necessary to specify the domain of interest and the mesh desired for
the finite element solution; this is done for two different approximations to the collapsed tube
cross-sectional shape. Due to the two axes of symmetry in the problem, a solution may be
obtained for one quarter of the entire tube cross-section and the flow in the remainder of the tube
inferred from this reduced problem. The collapsed tube shape is inherently three-dimensional,
so that it is not possible to resort to axi-symmetry or two-dimensionality to further simplify the
domain considered, but for the purposes of this calculation we are willing to consider the steady
flow problem, so that the length of the tube section in which a solution is calculated may be short
with periodic boundary conditions. In figure B.1 the domain in which the computation is carried
out is shown with the element mesh used. No slip or symmetry conditions are imposed on the
appropriate non-periodic boundaries, and the full steady Navier-Stokes equations solved subject
to these boundary conditions. To ensure that the mesh being used gives an accurate solution to
the problem, a mesh that was half again as dense was used for comparison; little difference

between the solutions obtained with the original and refined mesh was observed.

§B.2 Results
Vector plots showing the flow profiles generated by FIDAP are shown in figures B.2A
and B.2B for the domains considered. Contour plots of the same solutions are shown in figure

B.3A and B.3B.
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Figure B.1 Meshed domain for FIDAP computations
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Figure B.2 Vector plots of steady velocity in collapsed tube cross-section. B.2A

and B.2B show velocities for each of the two tube shapes considered.
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Figure B.3 Contour plots of steady velocity in collapsed tube cross-section.

B.3A and B.3B show velocities for each of the two tube shapes

considered.
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